van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen acknowledged by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.
Butterfield LH. Most cancers vaccines. BMJ. 2015;350: h988.
Le Thanh T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, et al. The COVID-19 vaccine growth panorama. Nat Rev Drug Discov. 2020;19:305–6.
Antonarelli G, Corti C, Tarantino P, Ascione L, Cortes J, Romero P, et al. Therapeutic most cancers vaccines revamping: know-how developments and pitfalls. Ann Oncol. 2021. https://doi.org/10.1016/j.annonc.2021.08.2153.
Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, et al. COVID-19 vaccine growth and a possible nanomaterial path ahead. Nat Nanotechnol. 2020;15:646–55.
Enokida T, Moreira A, Bhardwaj N. Vaccines for immunoprevention of most cancers. J Clin Make investments. 2021. https://doi.org/10.1172/JCI146956.
Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic most cancers vaccines. Nat Rev Most cancers. 2021;21:360–78.
Cox JC, Coulter AR. Adjuvants—a classification and assessment of their modes of motion. Vaccine. 1997;15:248–56.
Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine adjuvants: from 1920 to 2015 and past. Vaccines. 2015;3:320–43.
Danielsson R, Eriksson H. Aluminium adjuvants in vaccines—a method to modulate the immune response. Semin Cell Dev Biol. 2021;115:3–9.
Marrack P, McKee AS, Munks MW. In the direction of an understanding of the adjuvant motion of aluminium. Nat Rev Immunol. 2009;9:287–93.
Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: a assessment on adjuvants in licensed vaccines. Semin Immunol. 2018;39:14–21.
Harandi AM. Techniques evaluation of human vaccine adjuvants. Semin Immunol. 2018;39:30–4.
Ammi R, De Waele J, Willemen Y, Van Brussel I, Schrijvers DM, Lion E, et al. Poly(I:C) as most cancers vaccine adjuvant: knocking on the door of medical breakthroughs. Pharmacol Ther. 2015;146:120–31.
Sultan H, Salazar AM, Celis E. Poly-ICLC, a multi-functional immune modulator for treating most cancers. Semin Immunol. 2020;49: 101414.
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Most cancers vaccines as promising immuno-therapeutics: platforms and present progress. J Hematol Oncol. 2022;15:28.
Azharuddin M, Zhu GH, Sengupta A, Hinkula J, Slater NKH, Patra HK. Nano toolbox in immune modulation and nanovaccines. Developments Biotechnol. 2022. https://doi.org/10.1016/j.tibtech.2022.03.011.
Han S, Ma W, Jiang D, Sutherlin L, Zhang J, Lu Y, et al. Intracellular signaling pathway in dendritic cells and antigen transport pathway in vivo mediated by an OVA@DDAB/PLGA nano-vaccine. J Nanobiotechnol. 2021;19:394.
Yu X, Dai Y, Zhao Y, Qi S, Liu L, Lu L, et al. Melittin-lipid nanoparticles goal to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020;11:1110.
Zhu M. Immunological views on spatial and temporal vaccine supply. Adv Drug Deliv Rev. 2021;178: 113966.
Machtakova M, Thérien-Aubin H, Landfester Okay. Polymer nano-systems for the encapsulation and supply of lively biomacromolecular therapeutic brokers. Chem Soc Rev. 2021. https://doi.org/10.1039/D1CS00686J.
Nasrollahi F, Haghniaz R, Hosseini V, Davoodi E, Mahmoodi M, Karamikamkar S, et al. Micro and nanoscale applied sciences for prognosis of viral infections. Small. 2021;17: e2100692.
Zhang Y-N, Lazarovits J, Poon W, Ouyang B, Nguyen LNM, Kingston BR, et al. Nanoparticle dimension influences antigen retention and presentation in lymph node follicles for humoral immunity. Nano Lett. 2019;19:7226–35.
Xie X, Feng Y, Zhang H, Su Q, Tune T, Yang G, et al. Transforming tumor immunosuppressive microenvironment by way of a novel bioactive nanovaccines potentiates the efficacy of most cancers immunotherapy. Bioact Mater. 2022;16:107–19.
Conniot J, Scomparin A, Peres C, Yeini E, Pozzi S, Matos AI, et al. Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nat Nanotechnol. 2019;14:891–901.
Feng C, Li Y, Ferdows BE, Patel DN, Ouyang J, Tang Z, et al. Rising vaccine nanotechnology: from protection towards an infection to sniping most cancers. Acta Pharm Sin B. 2022. https://doi.org/10.1016/j.apsb.2021.12.021.
Meng J, Zhang P, Chen Q, Wang Z, Gu Y, Ma J, et al. Two-pronged intracellular co-delivery of antigen and adjuvant for synergistic most cancers immunotherapy. Adv Mater. 2022. https://doi.org/10.1002/adma.202202168.
Solar B, Xia T. Nanomaterial-based vaccine adjuvants. J Mater Chem B. 2016;4:5496–509.
Schijns VE. Immunological ideas of vaccine adjuvant exercise. Curr Opin Immunol. 2000;12:456–63.
Pulendran B, Arunachalam PS, O’Hagan DT. Rising ideas within the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20:454–75.
Duthie MS, Windish HP, Fox CB, Reed SG. Use of outlined TLR ligands as adjuvants inside human vaccines. Immunol Rev. 2011;239:178–96.
Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19:24–32.
Zhao H, Lv X, Huang J, Huang S, Zhou H, Wang H, et al. Two-phase releasing immune-stimulating composite orchestrates safety towards microbial infections. Biomaterials. 2021;277: 121106.
Yong HY, Luo D. RIG-I-like receptors as novel targets for pan-antivirals and vaccine adjuvants towards rising and re-emerging viral infections. Entrance Immunol. 2018;9:1379.
Vyas JM, Van der Veen AG, Ploegh HL. The recognized unknowns of antigen processing and presentation. Nat Rev Immunol. 2008;8:607–18.
Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12:557–69.
Lu Y, Shi Y, You J. Technique and medical software of up-regulating cross presentation by DCs in anti-tumor remedy. J Management Launch. 2022;341:184–205.
Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules. Annu Rev Immunol. 2017;35:149–76.
Dadfar SM, Roemhild Okay, Drude NI, von Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic functions. Adv Drug Deliv Rev. 2019;138:302–25.
Khan S, Setua S, Kumari S, Dan N, Massey A, Hafeez BB, et al. Superparamagnetic iron oxide nanoparticles of curcumin improve gemcitabine therapeutic response in pancreatic most cancers. Biomaterials. 2019;208:83–97.
Mou Y, Hou Y, Chen B, Hua Z, Zhang Y, Xie H, et al. In vivo migration of dendritic cells labeled with artificial superparamagnetic iron oxide. Int J Nanomed. 2011;6:2633–40.
Mou Y, Xing Y, Ren H, Cui Z, Zhang Y, Yu G, et al. The impact of superparamagnetic iron oxide nanoparticle floor cost on antigen cross-presentation. Nanoscale Res Lett. 2017;12:52.
Liu H, Dong H, Zhou N, Dong S, Chen L, Zhu Y, et al. SPIO improve the cross-presentation and migration of DCs and anionic SPIO affect the nanoadjuvant results associated to interleukin-1β. Nanoscale Res Lett. 2018;13:409.
Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron oxide nanoparticles-based vaccine supply for most cancers therapy. Mol Pharm. 2018;15:1791–9.
Li H, Li Y, Jiao J, Hu H-M. Alpha-alumina nanoparticles induce environment friendly autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol. 2011;6:645–50.
Li Y, Wang L-X, Yang G, Hao F, Urba WJ, Hu H-M. Environment friendly cross-presentation is dependent upon autophagy in tumor cells. Most cancers Res. 2008;68:6889–95.
Van Kaer L, Parekh VV, Postoak JL, Wu L. Position of autophagy in MHC class I-restricted antigen presentation. Mol Immunol. 2019;113:2–5.
Zhao J, Xu Y, Ma S, Wang Y, Huang Z, Qu H, et al. A minimalist binary vaccine service for personalised postoperative most cancers vaccine remedy. Adv Mater. 2022. https://doi.org/10.1002/adma.202109254.
Li W, Jing Z, Wang S, Li Q, Xing Y, Shi H, et al. P22 virus-like particles as an efficient antigen supply nanoplatform for most cancers immunotherapy. Biomaterials. 2021;271: 120726.
Kubota H, Nambu Y, Endo T. Handy and quantitative esterification of poly (γ-glutamic acid) produced by microorganism. J Polym Sci A Polym Chem. 1993;31:2877–8.
Manocha B, Margaritis A. Manufacturing and characterization of gamma-polyglutamic acid nanoparticles for managed anticancer drug launch. Crit Rev Biotechnol. 2008;28:83–99.
Yoshikawa T, Okada N, Oda A, Matsuo Okay, Matsuo Okay, Kayamuro H, et al. Nanoparticles constructed by self-assembly of amphiphilic gamma-PGA can ship antigens to antigen-presenting cells with excessive effectivity: a brand new tumor-vaccine service for eliciting effector T cells. Vaccine. 2008;26:1303–13.
Uto T, Akagi T, Yoshinaga Okay, Toyama M, Akashi M, Baba M. The induction of innate and adaptive immunity by biodegradable poly (γ-glutamic acid) nanoparticles by way of a TLR4 and MyD88 signaling pathway. Biomaterials. 2011;32:5206–12.
Matsuo Okay, Koizumi H, Akashi M, Nakagawa S, Fujita T, Yamamoto A, et al. Intranasal immunization with poly (γ-glutamic acid) nanoparticles entrapping antigenic proteins can induce potent tumor immunity. J Management Launch. 2011;152:310–6.
Estevez F, Carr A, Solorzano L, Valiente O, Mesa C, Barroso O, et al. Enhancement of the immune response to poorly immunogenic gangliosides after incorporation into very small dimension proteoliposomes (VSSP). Vaccine. 1999;18:190–7.
Mesa C, De León J, Rigley Okay, Fernández LE. Very small dimension proteoliposomes derived from Neisseria meningitidis: an efficient adjuvant for Th1 induction and dendritic cell activation. Vaccine. 2004;22:3045–52.
Mesa C, de León J, Rigley Okay, Fernández LE. Very small dimension proteoliposomes derived from Neisseria meningitidis: an efficient adjuvant for dendritic cell activation. Vaccine. 2006;24(Suppl 2):S2-42.
Torréns I, Mendoza O, Batte A, Reyes O, Fernández LE, Mesa C, et al. Immunotherapy with CTL peptide and VSSP eradicated established human papillomavirus (HPV) kind 16 E7-expressing tumors. Vaccine. 2005;23:5768–74.
Yan W, Chen W, Huang L. Mechanism of adjuvant exercise of cationic liposome: phosphorylation of a MAP kinase, ERK and induction of chemokines. Mol Immunol. 2007;44:3672–81.
Chen W, Yan W, Huang L. A easy however efficient most cancers vaccine consisting of an antigen and a cationic lipid. Most cancers Immunol Immunother. 2008;57:517–30.
Vasievich EA, Chen W, Huang L. Enantiospecific adjuvant exercise of cationic lipid DOTAP in most cancers vaccine. Most cancers Immunol Immunother. 2011;60:629–38.
Gandhapudi SK, Ward M, Bush JPC, Bedu-Addo F, Conn G, Woodward JG. Antigen priming with enantiospecific cationic lipid nanoparticles induces potent antitumor CTL responses by way of novel induction of a kind I IFN response. J Immunol. 2019;202:3524–36.
Zhang H, You X, Wang X, Cui L, Wang Z, Xu F, et al. Supply of mRNA vaccine with a lipid-like materials potentiates antitumor efficacy by way of Toll-like receptor 4 signaling. Proc Natl Acad Sci USA. 2021. https://doi.org/10.1073/pnas.2005191118.
Basu A, Domb AJ. Current advances in polyanhydride based mostly biomaterials. Adv Mater. 2018;30: e1706815.
Tamayo I, Irache JM, Mansilla C, Ochoa-Repáraz J, Lasarte JJ, Gamazo C. Poly(anhydride) nanoparticles act as lively Th1 adjuvants by way of Toll-like receptor exploitation. Clin Vaccine Immunol. 2010;17:1356–62.
Wafa EI, Geary SM, Goodman JT, Narasimhan B, Salem AK. The impact of polyanhydride chemistry in particle-based most cancers vaccines on the magnitude of the anti-tumor immune response. Acta Biomater. 2017;50:417–27.
Wafa EI, Geary SM, Ross KA, Goodman JT, Narasimhan B, Salem AK. Single dose of a polyanhydride particle-based vaccine generates potent antigen-specific antitumor immune responses. J Pharmacol Exp Ther. 2019;370:855–63.
Darling R, Senapati S, Christiansen J, Liu L, Ramer-Tait AE, Narasimhan B, et al. Polyanhydride nanoparticles induce low inflammatory dendritic cell activation leading to CD8 T cell reminiscence and delayed tumor development. Int J Nanomed. 2020;15:6579–92.
Gilmore TD, Wolenski FS. NF-κB: the place did it come from and why? Immunol Rev. 2012;246:14–35.
DiDonato JA, Mercurio F, Karin M. NF-κB and the hyperlink between irritation and most cancers. Immunol Rev. 2012;246:379–400.
Xu Y, Wang Y, Yang Q, Liu Z, Xiao Z, Le Z, et al. A flexible supramolecular nanoadjuvant that prompts NF-κB for most cancers immunotherapy. Theranostics. 2019;9:3388–97.
Li A, Qin L, Zhu D, Zhu R, Solar J, Wang S. Signalling pathways concerned within the activation of dendritic cells by layered double hydroxide nanoparticles. Biomaterials. 2010;31:748–56.
Li A, Qin L, Wang W, Zhu R, Yu Y, Liu H, et al. Using layered double hydroxides as DNA vaccine supply vector for enhancement of anti-melanoma immune response. Biomaterials. 2011;32:469–77.
Yan S, Gu W, Zhang B, Rolfe BE, Xu ZP. Excessive adjuvant exercise of layered double hydroxide nanoparticles and nanosheets in anti-tumour vaccine formulations. Dalton Trans. 2018;47:2956–64.
Chattopadhyay S, Sprint SK, Ghosh T, Das S, Tripathy S, Mandal D, et al. Anticancer and immunostimulatory position of encapsulated tumor antigen containing cobalt oxide nanoparticles. J Biol Inorg Chem. 2013;18:957–73.
Chattopadhyay S, Sprint SK, Mandal D, Das B, Tripathy S, Dey A, et al. Steel based mostly nanoparticles as most cancers antigen supply autos for macrophage based mostly antitumor vaccine. Vaccine. 2016;34:957–67.
Su Q, Tune H, Huang P, Zhang C, Yang J, Kong D, et al. Supramolecular co-assembly of self-adjuvanting nanofibrious peptide hydrogel enhances most cancers vaccination by activating MyD88-dependent NF-κB signaling pathway with out irritation. Bioact Mater. 2021;6:3924–34.
Lamkanfi M, Dixit VM. Mechanisms and capabilities of inflammasomes. Cell. 2014;157:1013–22.
Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci. 2014;1319:82–95.
Tartey S, Kanneganti T-D. Differential position of the NLRP3 inflammasome in an infection and tumorigenesis. Immunology. 2019;156:329–38.
Morishige T, Yoshioka Y, Inakura H, Tanabe A, Yao X, Narimatsu S, et al. The impact of floor modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1beta manufacturing, ROS manufacturing and endosomal rupture. Biomaterials. 2010;31:6833–42.
Li WA, Lu BY, Gu L, Choi Y, Kim J, Mooney DJ. The impact of floor modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials. 2016;83:249–56.
Nguyen TL, Choi Y, Kim J. Mesoporous silica as a flexible platform for most cancers immunotherapy. Adv Mater. 2019;31: e1803953.
Wang X, Li X, Ito A, Watanabe Y, Sogo Y, Tsuji NM, et al. Stimulation of in vivo antitumor immunity with hole mesoporous silica nanospheres. Angew Chem Int Ed Engl. 2016;55:1899–903.
Yang Y, Lu Y, Abbaraju PL, Zhang J, Zhang M, Xiang G, et al. Multi-shelled dendritic mesoporous organosilica hole spheres: roles of composition and structure in most cancers immunotherapy. Angew Chem Int Ed Engl. 2017;56:8446–50.
Li AW, Sobral MC, Badrinath S, Choi Y, Graveline A, Stafford AG, et al. A facile strategy to reinforce antigen response for personalised most cancers vaccination. Nat Mater. 2018;17:528–34.
Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chem Sci. 2017;8:1719–35.
Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human most cancers. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19071979.
Almeida JPM, Lin AY, Figueroa ER, Foster AE, Drezek RA. In vivo gold nanoparticle supply of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor fashions. Small. 2015;11:1453–9.
Niikura Okay, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, et al. Gold nanoparticles as a vaccine platform: affect of dimension and form on immunological responses in vitro and in vivo. ACS Nano. 2013;7:3926–38.
Zhu M, Du L, Zhao R, Wang HY, Zhao Y, Nie G, et al. Cell-penetrating nanoparticles activate the inflammasome to reinforce antibody manufacturing by concentrating on microtubule-associated protein 1-light chain 3 for degradation. ACS Nano. 2020;14:3703–17.
Manna S, Howitz WJ, Oldenhuis NJ, Eldredge AC, Shen J, Nihesh FN, et al. Immunomodulation of the NLRP3 inflammasome by way of structure-based activator design and practical regulation by way of lysosomal rupture. ACS Cent Sci. 2018;4:982–95.
Fan Z, Jan S, Hickey JC, Davies DH, Felgner J, Felgner PL, et al. Multifunctional dendronized polypeptides for managed adjuvanticity. Biomacromolecules. 2021;22:5074–86.
Saleiro D, Platanias LC. Interferon signaling in most cancers. Non-canonical pathways and management of intracellular immune checkpoints. Semin Immunol. 2019;43:101299.
Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, et al. Tailoring porous silicon for biomedical functions: from drug supply to most cancers immunotherapy. Adv Mater. 2018;30: e1703740.
Xia X, Mai J, Xu R, Perez JET, Guevara ML, Shen Q, et al. Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing kind I interferon response. Cell Rep. 2015;11:957–66.
Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, et al. A STING-activating nanovaccine for most cancers immunotherapy. Nat Nanotechnol. 2017;12:648–54.
Li S, Luo M, Wang Z, Feng Q, Wilhelm J, Wang X, et al. Extended activation of innate immune pathways by a polyvalent STING agonist. Nat Biomed Eng. 2021;5:455–66.
Luo M, Liu Z, Zhang X, Han C, Samandi LZ, Dong C, et al. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves most cancers immunotherapy. J Management Launch. 2019;300:154–60.
Luo Z, He T, Liu P, Yi Z, Zhu S, Liang X, et al. Self-adjuvanted molecular activator (SeaMac) nanovaccines promote most cancers immunotherapy. Adv Healthc Mater. 2021;10: e2002080.
Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba Okay. Chitosan as a bioactive polymer: processing, properties and functions. Int J Biol Macromol. 2017;105:1358–68.
Khan F, Pham DTN, Oloketuyi SF, Manivasagan P, Oh J, Kim Y-M. Chitosan and their derivatives: antibiofilm medication towards pathogenic micro organism. Colloids Surf B Biointerfaces. 2020;185: 110627.
Assa F, Jafarizadeh-Malmiri H, Ajamein H, Vaghari H, Anarjan N, Ahmadi O, et al. Chitosan magnetic nanoparticles for drug supply methods. Crit Rev Biotechnol. 2017;37:492–509.
Lin Y-C, Lou P-J, Younger T-H. Chitosan as an adjuvant-like substrate for dendritic cell tradition to reinforce antitumor results. Biomaterials. 2014;35:8867–75.
Wen Z-S, Xu Y-L, Zou X-T, Xu Z-R. Chitosan nanoparticles act as an adjuvant to advertise each Th1 and Th2 immune responses induced by ovalbumin in mice. Mar Medicine. 2011;9:1038–55.
Carroll EC, Jin L, Mori A, Muñoz-Wolf N, Oleszycka E, Moran HBT, et al. The vaccine adjuvant chitosan promotes mobile immunity by way of DNA sensor cGAS-STING-dependent induction of kind I interferons. Immunity. 2016;44:597–608.
Shi G-N, Zhang C-N, Xu R, Niu J-F, Tune H-J, Zhang X-Y, et al. Enhanced antitumor immunity by concentrating on dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials. 2017;113:191–202.
Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic nanotechnology towards personalised vaccines. Adv Mater. 2020;32: e1901255.
Pattenden LK, Middelberg APJ, Niebert M, Lipin DI. In the direction of the preparative and large-scale precision manufacture of virus-like particles. Developments Biotechnol. 2005;23:523–9.
Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Main findings and up to date advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123–32.
Grgacic EVL, Anderson DA. Virus-like particles: passport to immune recognition. Strategies. 2006;40:60–5.
Donaldson B, Lateef Z, Walker GF, Younger SL, Ward VK. Virus-like particle vaccines: immunology and formulation for medical translation. Professional Rev Vaccines. 2018;17:833–49.
Mohsen MO, Speiser DE, Knuth A, Bachmann MF. Virus-like particles for vaccination towards most cancers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12: e1579.
Evtushenko EA, Ryabchevskaya EM, Nikitin NA, Atabekov JG, Karpova OV. Plant virus particles with varied shapes as potential adjuvants. Sci Rep. 2020;10:10365.
Lebel M-È, Chartrand Okay, Leclerc D, Lamarre A. Plant viruses as nanoparticle-based vaccines and adjuvants. Vaccines. 2015;3:620–37.
Albakri MM, Veliz FA, Fiering SN, Steinmetz NF, Sieg SF. Endosomal toll-like receptors play a key position in activation of main human monocytes by cowpea mosaic virus. Immunology. 2020;159:183–92.
Lebel M-È, Langlois M-P, Daudelin J-F, Tarrab E, Savard P, Leclerc D, et al. Complement part 3 regulates IFN-α manufacturing by plasmacytoid dendritic cells following TLR7 activation by a plant virus-like nanoparticle. J Immunol. 2017;198:292–9.
Wang C, Beiss V, Steinmetz NF. Cowpea mosaic virus nanoparticles and empty virus-like particles present distinct however overlapping immunostimulatory properties. J Virol. 2019. https://doi.org/10.1128/JVI.00129-19.
Shukla S, Wang C, Beiss V, Steinmetz NF. Antibody response towards cowpea mosaic viral nanoparticles improves vaccine efficacy in ovarian most cancers. ACS Nano. 2020;14:2994–3003.
Lee KL, Murray AA, Le DHT, Sheen MR, Shukla S, Commandeur U, et al. Mixture of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response. Nano Lett. 2017;17:4019–28.
McCormick AA, Corbo TA, Wykoff-Clary S, Palmer KE, Pogue GP. Chemical conjugate TMV-peptide bivalent fusion vaccines enhance mobile immunity and tumor safety. Bioconjug Chem. 2006;17:1330–8.
Lebel M-È, Chartrand Okay, Tarrab E, Savard P, Leclerc D, Lamarre A. Potentiating most cancers immunotherapy utilizing papaya mosaic virus-derived nanoparticles. Nano Lett. 2016;16:1826–32.
Mao C, Beiss V, Fields J, Steinmetz NF, Fiering S. Cowpea mosaic virus stimulates antitumor immunity by way of recognition by a number of MYD88-dependent toll-like receptors. Biomaterials. 2021;275: 120914.
Krishnan L, Dicaire CJ, Patel GB, Sprott GD. Archaeosome vaccine adjuvants induce sturdy humoral, cell-mediated, and reminiscence responses: comparability to traditional liposomes and alum. Infect Immun. 2000;68:54–63.
Krishnan L, Unhappy S, Patel GB, Sprott GD. The potent adjuvant exercise of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo. J Immunol. 2001;166:1885–93.
Krishnan L, Sprott GD. Archaeosome adjuvants: immunological capabilities and mechanism(s) of motion. Vaccine. 2008;26:2043–55.
Krishnan L, Unhappy S, Patel GB, Sprott GD. Archaeosomes induce enhanced cytotoxic T lymphocyte responses to entrapped soluble protein within the absence of interleukin 12 and defend towards tumor problem. Most cancers Res. 2003;63:2526–34.
Rudra JS, Tian YF, Jung JP, Collier JH. A self-assembling peptide appearing as an immune adjuvant. Proc Natl Acad Sci USA. 2010;107:622–7.
Huang Z-H, Shi L, Ma J-W, Solar Z-Y, Cai H, Chen Y-X, et al. A very artificial, self-assembling, adjuvant-free MUC1 glycopeptide vaccine for most cancers remedy. J Am Chem Soc. 2012;134:8730–3.
Li S, Zhang Q, Bai H, Huang W, Shu C, Ye C, et al. Self-assembled nanofibers elicit potent HPV16 E7-specific mobile immunity and abolish established TC-1 graft tumor. Int J Nanomed. 2019;14:8209–19.
Wu Y, Kelly SH, Sanchez-Perez L, Sampson JH, Collier JH. Comparative research of α-helical and β-sheet self-assembled peptide nanofiber vaccine platforms: affect of built-in T-cell epitopes. Biomater Sci. 2020;8:3522–35.
Kang Z, Lee S-T. Carbon dots: advances in nanocarbon functions. Nanoscale. 2019;11:19214–24.
Luo L, Liu C, He T, Zeng L, Xing J, Xia Y, et al. Engineered fluorescent carbon dots as promising immune adjuvants to effectively improve most cancers immunotherapy. Nanoscale. 2018;10:22035–43.
Veglia F, Tyurin VA, Mohammadyani D, Blasi M, Duperret EK, Donthireddy L, et al. Lipid our bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in most cancers. Nat Commun. 2017;8:2122.
Coffman RL, Sher A, Seder RA. Vaccine adjuvants: placing innate immunity to work. Immunity. 2010;33:492–503.
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-00806-7.
Hirai T, Yoshioka Y, Takahashi H, Ichihashi Okay-I, Yoshida T, Tochigi S, et al. Amorphous silica nanoparticles improve cross-presentation in murine dendritic cells. Biochem Biophys Res Commun. 2012;427:553–6.
Carr A, Rodríguez E, Arango MDC, Camacho R, Osorio M, Gabri M, et al. Immunotherapy of superior breast most cancers with a heterophilic ganglioside (NeuGcGM3) most cancers vaccine. J Clin Oncol. 2003;21:1015–21.
Caballero I, Aira LE, Lavastida A, Popa X, Rivero J, González J, et al. Security and immunogenicity of a human epidermal development issue receptor 1 (HER1)-based vaccine in prostate castration-resistant carcinoma sufferers: a dose-escalation part i research trial. Entrance Pharmacol. 2017;8:263.
Morera Y, Sánchez J, Bequet-Romero M, Selman-Housein Okay-H, de la Torre A, Hernández-Bernal F, et al. Particular humoral and mobile immune responses in most cancers sufferers present process continual immunization with a VEGF-based therapeutic vaccine. Vaccine. 2017;35:3582–90.
Solares AM, Baladron I, Ramos T, Valenzuela C, Borbon Z, Fanjull S, et al. Security and immunogenicity of a human papillomavirus peptide vaccine (CIGB-228) in ladies with high-grade cervical intraepithelial neoplasia: first-in-human, Proof-of-Idea Trial. ISRN Obstet Gynecol. 2011;2011: 292951.
Junco JA, Rodríguez R, Fuentes F, Baladrón I, Castro MD, Calzada L, et al. Security and therapeutic profile of a GnRH-based vaccine candidate directed to prostate most cancers. A ten-year follow-up of sufferers vaccinated with heberprovac. Entrance Oncol. 2019;9:49.
Mamo T, Poland GA. Nanovaccinology: the subsequent technology of vaccines meets twenty first century supplies science and engineering. Vaccine. 2012;30:6609–11.
Saung MT, Ke X, Howard GP, Zheng L, Mao H-Q. Particulate service methods as adjuvants for most cancers vaccines. Biomater Sci. 2019;7:4873–87.
Aiga T, Manabe Y, Ito Okay, Chang T-C, Kabayama Okay, Ohshima S, et al. Immunological analysis of co-assembling a lipidated peptide antigen and lipophilic adjuvants: self-adjuvanting anti-breast-cancer vaccine candidates. Angew Chem Int Ed Engl. 2020;59:17705–11.
Wang X, Li X, Ito A, Sogo Y, Watanabe Y, Hashimoto Okay, et al. Synergistic results of stellated fibrous mesoporous silica and artificial dsRNA analogues for most cancers immunotherapy. Chem Commun. 2018;54:1057–60.
Yan S, Rolfe BE, Zhang B, Mohammed YH, Gu W, Xu ZP. Polarized immune responses modulated by layered double hydroxides nanoparticle conjugated with CpG. Biomaterials. 2014;35:9508–16.
Xu Y, Ma S, Zhao J, Chen H, Si X, Huang Z, et al. Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials. 2022;284: 121489.
Batista-Duharte A, Martínez DT, Carlos IZ. Efficacy and security of immunological adjuvants. The place is the cut-off? Biomed Pharmacother. 2018;105:616–24.
Shi Y, Lammers T. Combining nanomedicine and immunotherapy. Acc Chem Res. 2019;52:1543–54.
Hannon G, Lysaght J, Liptrott NJ, Prina-Mello A. Immunotoxicity issues for subsequent technology most cancers nanomedicines. Adv Sci. 2019;6:1900133.
Tian M, Hua Z, Hong S, Zhang Z, Liu C, Lin L, et al. B cell-intrinsic MyD88 signaling promotes preliminary cell proliferation and differentiation to reinforce the germinal middle response to a virus-like particle. J Immunol. 2018;200:937–48.
Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in most cancers. Nat Rev Most cancers. 2014;14:159–72.
Riedel A, Shorthouse D, Haas L, Corridor BA, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118–27.
Gillot L, Baudin L, Rouaud L, Kridelka F, Noël A. The pre-metastatic area of interest in lymph nodes: formation and traits. Cell Mol Life Sci. 2021;78:5987–6002.
Leary N, Walser S, He Y, Cousin N, Pereira P, Gallo A, et al. Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J Extracell Vesicles. 2022;11: e12197.
Cai T, Liu H, Zhang S, Hu J, Zhang L. Supply of nanovaccine in direction of lymphoid organs: current methods in enhancing most cancers immunotherapy. J Nanobiotechnol. 2021;19:389.
Zhang Y-N, Poon W, Sefton E, Chan WCW. Suppressing subcapsular sinus macrophages enhances transport of nanovaccines to lymph node follicles for strong humoral immunity. ACS Nano. 2020;14:9478–90.
Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal management of vaccine responses. Nat Rev Mater. 2021. https://doi.org/10.1038/s41578-021-00372-2.