Monday, August 1, 2022
HomeNanotechnologyLipidomic identification of urinary extracellular vesicles for non-alcoholic steatohepatitis analysis | Journal...

Lipidomic identification of urinary extracellular vesicles for non-alcoholic steatohepatitis analysis | Journal of Nanobiotechnology


  • Sharma B, John S. Nonalcoholic Steatohepatitis (NASH). StatPearls; 2021.

  • Antunes C, Azadfard M, Hoilat GJ, Gupta M. Fatty Liver. StatPearls; 2021.

  • Huang DQ, El-Serag HB, Loomba R. International epidemiology of NAFLD-related HCC: tendencies, predictions, danger elements and prevention. Nat Rev Gastroenterol Hepatol. 2021;18(4):223–38.

    PubMed 
    Article 

    Google Scholar
     

  • Lazarus JV, Mark HE, Anstee QM, Arab JP, Batterham RL, Castera L, et al. Advancing the worldwide public well being agenda for NAFLD: a consensus assertion. Nat Rev Gastroenterol Hepatol. 2022;19(1):60–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sanyal AJ. Previous, current and future views in nonalcoholic fatty liver illness. Nat Rev Gastroenterol Hepatol. 2019;16(6):377–86.

    PubMed 
    Article 

    Google Scholar
     

  • Sharma M, Premkumar M, Kulkarni AV, Kumar P, Reddy DN, Rao NP. Medication for non-alcoholic steatohepatitis (NASH): quest for the Holy Grail. J Clin Transl Hepatol. 2021;9(1):40–50.

    PubMed 

    Google Scholar
     

  • Wong VW-S, Adams LA, de Lédinghen V, Wong GL-H, Sookoian S. Noninvasive biomarkers in NAFLD and NASH—present progress and future promise. Nat Rev Gastroenterol Hepatol. 2018;15(8):461–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ng Ok, Stenzl A, Sharma A, Vasdev N. Urinary biomarkers in bladder most cancers: a overview of the present panorama and future instructions. Urol Oncol. 2021;39(1):41–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vitorino R, Ferreira R, Guedes S, Amado F, Thongboonkerd V. What can urinary exosomes inform us? Cell Mol Life Sci: CMLS. 2021;78(7):3265–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Erdbrugger U, Blijdorp CJ, Bijnsdorp IV, Borras FE, Burger D, Bussolati B, et al. Urinary extracellular vesicles: a place paper by the urine job pressure of the worldwide society for extracellular vesicles. J Extracell Vesicles. 2021;10(7): e12093.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Agudiez M, Martinez PJ, Martin-Lorenzo M, Heredero A, Santiago-Hernandez A, Molero D, et al. Evaluation of urinary exosomal metabolites identifies cardiovascular danger signatures with added worth to urine evaluation. BMC Biol. 2020;18(1):192.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Skotland T, Ekroos Ok, Kauhanen D, Simolin H, Seierstad T, Berge V, et al. Molecular lipid species in urinary exosomes as potential prostate most cancers biomarkers. Eur J Most cancers. 2017;70:122–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Panfoli I. Most cancers exosomes in urine: a promising biomarker supply. Transl Most cancers Res. 2017;6(S8):S1389–93.

    CAS 
    Article 

    Google Scholar
     

  • Fraser KB, Rawlins AB, Clark RG, Alcalay RN, Standaert DG, Liu N, et al. Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s illness. Mov Disord. 2016;31(10):1543–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang Q, Cheng L, Hu L, Lou D, Zhang T, Li J, et al. An integrative microfluidic gadget for isolation and ultrasensitive detection of lung cancer-specific exosomes from affected person urine. Biosens Bioelectron. 2020;163: 112290.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu Q, Cheng L, Deng C, Huang L, Li J, Wang Y, et al. The genetic supply monitoring of human urinary exosomes. Proc Natl Acad Sci U S A. 2021;118(43):e2108876118.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Masoodi M, Gastaldelli A, Hyotylainen T, Arretxe E, Alonso C, Gaggini M, et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic exams. Nat Rev Gastroenterol Hepatol. 2021;18(12):835–56.

    PubMed 
    Article 

    Google Scholar
     

  • Hirsova P, Ibrahim SH, Krishnan A, Verma VK, Bronk SF, Werneburg NW, et al. Lipid-induced signaling causes launch of inflammatory extracellular vesicles from hepatocytes. Gastroenterology. 2016;150(4):956–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eguchi A, Feldstein AE. Extracellular vesicles in non-alcoholic and alcoholic fatty liver ailments. Liver Res. 2018;2(1):30–4.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kranendonk ME, Visseren FL, van Herwaarden JA, Nolte-’t Hoen EN, de Jager W, Wauben MH, et al. Impact of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Weight problems (Silver Spring, Md). 2014;22(10):2216–23.

    CAS 
    Article 

    Google Scholar
     

  • Lee YS, Kim SY, Ko E, Lee JH, Yi HS, Yoo YJ, et al. Exosomes derived from palmitic acid-treated hepatocytes induce fibrotic activation of hepatic stellate cells. Sci Rep. 2017;7(1):3710.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jiang F, Chen Q, Wang W, Ling Y, Yan Y, Xia P. Hepatocyte-derived extracellular vesicles promote endothelial irritation and atherogenesis through microRNA-1. J Hepatol. 2020;72(1):156–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu D, Zhu H, Wang H. Extracellular vesicles in non-alcoholic fatty liver illness and alcoholic liver illness. Entrance Physiol. 2021;12: 707429.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ipsen DH, Tveden-Nyborg P. Extracellular vesicles as drivers of non-alcoholic fatty liver illness: small particles with large influence. Biomedicines. 2021:9(1):93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Züllig T, Trötzmüller M, Köfeler HC. Lipidomics from pattern preparation to knowledge evaluation: a primer. Anal Bioanal Chem. 2020;412(10):2191–209.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Chen ZZ, Gerszten RE. Metabolomics and proteomics in kind 2 diabetes. Circ Res. 2020;126(11):1613–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Griffin JL. Twenty years of metabonomics: so what has metabonomics achieved for toxicology? Xenobiotica; the destiny of international compounds in organic techniques. 2020;50(1):110–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM. Metabolomics towards personalised drugs. Mass Spectrom Rev. 2019;38(3):221–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han X, Gross RW. The foundations and improvement of lipidomics. J Lipid Res. 2021;63(2):100164.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Avela HF, Sirén H. Advances in lipidomics. Clin Chim Acta. 2020;510:123–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kartsoli S, Kostara CE, Tsimihodimos V, Bairaktari ET, Christodoulou DK. Lipidomics in non-alcoholic fatty liver illness. World J Hepatol. 2020;12(8):436–50.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen Y, Zhu Q, Cheng L, Wang Y, Li M, Yang Q, et al. Exosome detection through the ultrafast-isolation system: EXODUS. Nat Strategies. 2021;18(2):212–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou W, Chen X, Zhou Y, Shi S, Liang C, Yu X, et al. Exosomes derived from immunogenically dying tumor cells as a flexible instrument for vaccination towards pancreatic most cancers. Biomaterials. 2022;280: 121306.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bence KK, Birnbaum MJ. Metabolic drivers of non-alcoholic fatty liver illness. Molecular metabolism. 2021;50: 101143.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kalhan SC, Guo L, Edmison J, Dasarathy S, McCullough AJ, Hanson RW, et al. Plasma metabolomic profile in nonalcoholic fatty liver illness. Metabolism: Scientific and Experimental. 2011;60(3):404–13.

    CAS 
    Article 

    Google Scholar
     

  • Chiappini F, Coilly A, Kadar H, Gual P, Tran A, Desterke C, et al. Metabolism dysregulation induces a particular lipid signature of nonalcoholic steatohepatitis in sufferers. Sci Rep. 2017;7:46658.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Secor JD, Fligor SC, Tsikis ST, Yu LJ, Puder M. Free fatty acid receptors as mediators and therapeutic targets in liver illness. Entrance Physiol. 2021;12: 656441.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kimura T, Singh S, Tanaka N, Umemura T. Function of G protein-coupled receptors in hepatic stellate cells and approaches to anti-fibrotic therapy of non-alcoholic fatty liver illness. Entrance Endocrinol. 2021;12: 773432.

    Article 

    Google Scholar
     

  • Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, et al. Oxidative stress in NAFLD: function of vitamins and meals contaminants. Biomolecules. 2020;10(12):1702.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Attia SL, Softic S, Mouzaki M. Evolving function for pharmacotherapy in NAFLD/NASH. Clin Transl Sci. 2021;14(1):11–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Albhaisi S, Noureddin M. Present and potential therapies focusing on irritation in NASH. Entrance Endocrinol. 2021;12: 767314.

    Article 

    Google Scholar
     

  • Gariani Ok, Jornayvaz FR. Pathophysiology of NASH in endocrine ailments. Endocr Join. 2021;10(2):R52-r65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chavez-Tapia NC, Rosso N, Tiribelli C. Impact of intracellular lipid accumulation in a brand new mannequin of non-alcoholic fatty liver illness. BMC Gastroenterol. 2012;12(1):1–10.

    Article 
    CAS 

    Google Scholar
     

  • Kakisaka Ok, Suzuki Y, Fujiwara Y, Suzuki A, Kanazawa J, Takikawa Y. Caspase-independent hepatocyte loss of life: a results of the lower of lysophosphatidylcholine acyltransferase 3 in non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 2019;34(7):1256–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • García-Cañaveras JC, Donato MT, Castell JV, Lahoz A. A complete untargeted metabonomic evaluation of human steatotic liver tissue by RP and HILIC chromatography coupled to mass spectrometry reveals necessary metabolic alterations. J Proteome Res. 2011;10(10):4825–34.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Thakur PC, Stuckenholz C, Rivera MR, Davison JM, Yao JK, Amsterdam A, et al. Lack of de novo phosphatidylinositol synthesis results in endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish. Hepatology (Baltimore, MD). 2011;54(2):452–62.

    CAS 
    Article 

    Google Scholar
     

  • Shirouchi B, Nagao Ok, Inoue N, Furuya Ok, Koga S, Matsumoto H, et al. Dietary phosphatidylinositol prevents the event of nonalcoholic fatty liver illness in Zucker (fa/fa) rats. J Agric Meals Chem. 2008;56(7):2375–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular