Saturday, February 11, 2023
HomeNanotechnologyEnhancing Li-ion interfacial transport in hybrid stable electrolytes

Enhancing Li-ion interfacial transport in hybrid stable electrolytes


  • Armand, M. & Tarascon, J.-M. Constructing higher batteries. Nature 451, 652–657 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical vitality storage for the grid: a battery of decisions. Science 334, 928–935 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, X. B., Zhao, C. Z., Yao, Y. X., Liu, H. & Zhang, Q. Latest advances in vitality chemistry between solid-state electrolyte and protected lithium-metal anodes. Chem 5, 74–96 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zaman, W., Hortance, N., Dixit, M. B., De Andrade, V. & Hatzell, Okay. B. Visualizing percolation and ion transport in hybrid stable electrolytes for Li-metal batteries. J. Mater. Chem. A 7, 23914–23921 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Armand, M. The historical past of polymer electrolytes. Stable State Ion. 69, 309–319 (1994).

    CAS 
    Article 

    Google Scholar
     

  • Bouchet, R. et al. Single-ion BAB triblock copolymers as extremely environment friendly electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Ma, Q. et al. Single lithium‐ion conducting polymer electrolytes primarily based on an excellent‐delocalized polyanion. Angew. Chem. Int. Ed. 55, 2521–2525 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Dixit, M. B. et al. Scalable manufacturing of hybrid stable electrolytes with interface management. ACS Appl. Mater. Interfaces 11, 45087–45097 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Osada, I., de Vries, H., Scrosati, B. & Passerini, S. Ionic‐liquid‐primarily based polymer electrolytes for battery purposes. Angew. Chem. Int. Ed. 55, 500–513 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Liu, M. et al. Tandem interface and bulk Li-ion transport in a hybrid stable electrolyte with microsized lively filler. ACS Vitality Lett. 4, 2336–2342 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yang, Okay. et al. Secure interface chemistry and a number of ion transport of composite electrolyte contribute to ultra-long biking solid-state LiNi0.8Co0.1Mn0.1O2/lithium metallic batteries. Angew. Chem. Int. Ed. 60, 24668–24675 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Croce, F., Sacchetti, S. & Scrosati, B. Superior lithium batteries primarily based on high-performance composite polymer electrolytes. J. Energy Sources 162, 685–689 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Syzdek, J. et al. Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes—A novel strategy. J. Energy Sources 194, 66–72 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Hassoun, J. & Scrosati, B. A excessive‐efficiency polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Płcharski, J. & Weiczorek, W. PEO primarily based composite stable electrolyte containing nasicon. Stable State Ion. 28, 979–982 (1988).

    Article 

    Google Scholar
     

  • Xu, Okay. Electrolytes and interphases in Li-ion batteries and past. Chem. Rev. 114, 11503–11618 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Lei, D. et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metallic battery. Nat. Commun. 10, 4244 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J., Tang, M. X. & Hu, Y. Y. Lithium ion pathway inside Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Wang, S. et al. A dendrite-suppressed versatile polymer-in-ceramic electrolyte membrane for superior lithium batteries. Electrochim. Acta 353, 136604 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Fergus, J. W. Ceramic and polymeric stable electrolytes for lithium-ion batteries. J. Energy Sources 195, 4554–4569 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Blanga, R., Burstein, L., Berman, M., Greenbaum, S. & Golodnitsky, D. Stable polymer-in-ceramic electrolyte fashioned by electrophoretic deposition. J. Electrochem. Soc. 162, D3084–D3089 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Vitality 46, 176–184 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Huo, H. Y. et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Vitality Mater. 9, 1804004 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bonizzoni, S. et al. NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Phys. Chem. Chem. Phys. 21, 6142–6149 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Dixit, M. B. et al. Nanoscale mapping of extrinsic interfaces in hybrid stable electrolytes. Joule 4, 207–221 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Simon, F. J. et al. Properties of the interphase fashioned between argyrodite-type Li6PS5Cl and polymer-based PEO10:LiTFSI. ACS Appl. Mater. Interfaces 11, 42186–42196 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Simon, F. J., Hanauer, M., Richter, F. H. & Janek, J. Interphase formation of PEO20:LiTFSI–Li6PS5Cl composite electrolytes with lithium metallic. ACS Appl. Mater. Interfaces 12, 11713–11723 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zheng, J., Wang, P., Liu, H. & Hu, Y.-Y. Interface-enabled ion conduction in Li10GeP2S12–poly (ethylene oxide) hybrid electrolytes. ACS Appl. Vitality Mater. 2, 1452–1459 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yu, C. et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. Nat. Commun. 8, 1086 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ganapathy, S., Yu, C., van Eck, E. R. H. & Wagemaker, M. Peeking throughout grain boundaries in a solid-state ionic conductor. ACS Vitality Lett. 4, 1092–1097 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Schwietert, T. Okay. et al. Clarifying the connection between redox exercise and electrochemical stability in stable electrolytes. Nat. Mater. 19, 428–435 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Hoefling, A. et al. Mechanism for the secure efficiency of sulfur-copolymer cathode in lithium–sulfur battery studied by solid-state NMR spectroscopy. Chem. Mater. 30, 2915–2923 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Rataboul, F. et al. Molecular understanding of the formation of floor zirconium hydrides upon thermal therapy beneath hydrogen of [(SiO)Zr(CH2tBu)3] by utilizing superior solid-state NMR strategies. J. Am. Chem. Soc. 126, 12541–12550 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Zhu, C., Cheng, H. & Yang, Y. Electrochemical characterization of two kinds of PEO-based polymer electrolytes with room-temperature ionic liquids. J. Electrochem. Soc. 155, A569 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Kodama, Okay. et al. Structural results of polyethers and ionic liquids of their binary mixtures on decrease important resolution temperature liquid-liquid section separation. Polym. J. 43, 242–248 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Cesare Marincola, F. et al. NMR investigation of imidazolium‐primarily based ionic liquids and their aqueous mixtures. ChemPhysChem 13, 1339–1346 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wang, B.-H., Xia, T., Chen, Q. & Yao, Y.-F. Probing the dynamics of Li+ ions on the crystal floor: a solid-state NMR research. Polymers 12, 391 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, Z. et al. Ionic‐affiliation‐assisted viscoelastic nylon electrolytes allow synchronously coupled interface for stable batteries. Adv. Funct. Mater. 30, 2000347 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ganapathy, S., van Eck, E. R., Kentgens, A. P., Mulder, F. M. & Wagemaker, M. Equilibrium lithium‐ion transport between nanocrystalline lithium‐inserted anatase TiO2 and the electrolyte. Chem. Eur. J. 17, 14811–14816 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Kumar, M. & Sekhon, S. S. Function of plasticizer’s dielectric fixed on conductivity modification of PEO–NH4F polymer electrolytes. Eur. Polym. J. 38, 1297–1304 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Liu, M. et al. Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Vitality 22, 278–289 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Fung, B., Khitrin, A. & Ermolaev, Okay. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular