Armand, M. & Tarascon, J.-M. Constructing higher batteries. Nature 451, 652–657 (2008).
Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical vitality storage for the grid: a battery of decisions. Science 334, 928–935 (2011).
Cheng, X. B., Zhao, C. Z., Yao, Y. X., Liu, H. & Zhang, Q. Latest advances in vitality chemistry between solid-state electrolyte and protected lithium-metal anodes. Chem 5, 74–96 (2019).
Zaman, W., Hortance, N., Dixit, M. B., De Andrade, V. & Hatzell, Okay. B. Visualizing percolation and ion transport in hybrid stable electrolytes for Li-metal batteries. J. Mater. Chem. A 7, 23914–23921 (2019).
Armand, M. The historical past of polymer electrolytes. Stable State Ion. 69, 309–319 (1994).
Bouchet, R. et al. Single-ion BAB triblock copolymers as extremely environment friendly electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).
Ma, Q. et al. Single lithium‐ion conducting polymer electrolytes primarily based on an excellent‐delocalized polyanion. Angew. Chem. Int. Ed. 55, 2521–2525 (2016).
Dixit, M. B. et al. Scalable manufacturing of hybrid stable electrolytes with interface management. ACS Appl. Mater. Interfaces 11, 45087–45097 (2019).
Osada, I., de Vries, H., Scrosati, B. & Passerini, S. Ionic‐liquid‐primarily based polymer electrolytes for battery purposes. Angew. Chem. Int. Ed. 55, 500–513 (2016).
Liu, M. et al. Tandem interface and bulk Li-ion transport in a hybrid stable electrolyte with microsized lively filler. ACS Vitality Lett. 4, 2336–2342 (2019).
Yang, Okay. et al. Secure interface chemistry and a number of ion transport of composite electrolyte contribute to ultra-long biking solid-state LiNi0.8Co0.1Mn0.1O2/lithium metallic batteries. Angew. Chem. Int. Ed. 60, 24668–24675 (2021).
Croce, F., Sacchetti, S. & Scrosati, B. Superior lithium batteries primarily based on high-performance composite polymer electrolytes. J. Energy Sources 162, 685–689 (2006).
Syzdek, J. et al. Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes—A novel strategy. J. Energy Sources 194, 66–72 (2009).
Hassoun, J. & Scrosati, B. A excessive‐efficiency polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010).
Płcharski, J. & Weiczorek, W. PEO primarily based composite stable electrolyte containing nasicon. Stable State Ion. 28, 979–982 (1988).
Xu, Okay. Electrolytes and interphases in Li-ion batteries and past. Chem. Rev. 114, 11503–11618 (2014).
Lei, D. et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metallic battery. Nat. Commun. 10, 4244 (2019).
Zheng, J., Tang, M. X. & Hu, Y. Y. Lithium ion pathway inside Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016).
Wang, S. et al. A dendrite-suppressed versatile polymer-in-ceramic electrolyte membrane for superior lithium batteries. Electrochim. Acta 353, 136604 (2020).
Fergus, J. W. Ceramic and polymeric stable electrolytes for lithium-ion batteries. J. Energy Sources 195, 4554–4569 (2010).
Blanga, R., Burstein, L., Berman, M., Greenbaum, S. & Golodnitsky, D. Stable polymer-in-ceramic electrolyte fashioned by electrophoretic deposition. J. Electrochem. Soc. 162, D3084–D3089 (2015).
Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Vitality 46, 176–184 (2018).
Huo, H. Y. et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Vitality Mater. 9, 1804004 (2019).
Bonizzoni, S. et al. NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Phys. Chem. Chem. Phys. 21, 6142–6149 (2019).
Dixit, M. B. et al. Nanoscale mapping of extrinsic interfaces in hybrid stable electrolytes. Joule 4, 207–221 (2020).
Simon, F. J. et al. Properties of the interphase fashioned between argyrodite-type Li6PS5Cl and polymer-based PEO10:LiTFSI. ACS Appl. Mater. Interfaces 11, 42186–42196 (2019).
Simon, F. J., Hanauer, M., Richter, F. H. & Janek, J. Interphase formation of PEO20:LiTFSI–Li6PS5Cl composite electrolytes with lithium metallic. ACS Appl. Mater. Interfaces 12, 11713–11723 (2020).
Zheng, J., Wang, P., Liu, H. & Hu, Y.-Y. Interface-enabled ion conduction in Li10GeP2S12–poly (ethylene oxide) hybrid electrolytes. ACS Appl. Vitality Mater. 2, 1452–1459 (2019).
Yu, C. et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. Nat. Commun. 8, 1086 (2017).
Ganapathy, S., Yu, C., van Eck, E. R. H. & Wagemaker, M. Peeking throughout grain boundaries in a solid-state ionic conductor. ACS Vitality Lett. 4, 1092–1097 (2019).
Schwietert, T. Okay. et al. Clarifying the connection between redox exercise and electrochemical stability in stable electrolytes. Nat. Mater. 19, 428–435 (2020).
Hoefling, A. et al. Mechanism for the secure efficiency of sulfur-copolymer cathode in lithium–sulfur battery studied by solid-state NMR spectroscopy. Chem. Mater. 30, 2915–2923 (2018).
Rataboul, F. et al. Molecular understanding of the formation of floor zirconium hydrides upon thermal therapy beneath hydrogen of [(⋮SiO)Zr(CH2tBu)3] by utilizing superior solid-state NMR strategies. J. Am. Chem. Soc. 126, 12541–12550 (2004).
Zhu, C., Cheng, H. & Yang, Y. Electrochemical characterization of two kinds of PEO-based polymer electrolytes with room-temperature ionic liquids. J. Electrochem. Soc. 155, A569 (2008).
Kodama, Okay. et al. Structural results of polyethers and ionic liquids of their binary mixtures on decrease important resolution temperature liquid-liquid section separation. Polym. J. 43, 242–248 (2011).
Cesare Marincola, F. et al. NMR investigation of imidazolium‐primarily based ionic liquids and their aqueous mixtures. ChemPhysChem 13, 1339–1346 (2012).
Wang, B.-H., Xia, T., Chen, Q. & Yao, Y.-F. Probing the dynamics of Li+ ions on the crystal floor: a solid-state NMR research. Polymers 12, 391 (2020).
Zhao, Z. et al. Ionic‐affiliation‐assisted viscoelastic nylon electrolytes allow synchronously coupled interface for stable batteries. Adv. Funct. Mater. 30, 2000347 (2020).
Ganapathy, S., van Eck, E. R., Kentgens, A. P., Mulder, F. M. & Wagemaker, M. Equilibrium lithium‐ion transport between nanocrystalline lithium‐inserted anatase TiO2 and the electrolyte. Chem. Eur. J. 17, 14811–14816 (2011).
Kumar, M. & Sekhon, S. S. Function of plasticizer’s dielectric fixed on conductivity modification of PEO–NH4F polymer electrolytes. Eur. Polym. J. 38, 1297–1304 (2002).
Liu, M. et al. Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Vitality 22, 278–289 (2016).
Fung, B., Khitrin, A. & Ermolaev, Okay. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).