Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. World most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71:209–49.
Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing significance of most cancers as a number one explanation for untimely loss of life worldwide. Most cancers. 2021;127:3029–30.
Xue T, Shen J, Shao Ok, Wang W, Wu B, He Y. Methods for tumor hypoxia imaging based mostly on aggregation-induced emission fluorogens. Chem Eur J. 2020;26:2521–8.
Li X, Lovell JF, Yoon J, Chen X. Medical improvement and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17:657–74.
Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z. Photodynamic remedy evaluation: rules, photosensitizers, functions, and future instructions. Pharmaceutics. 2021;13:1332.
Chen H, Wan Y, Cui X, Li S, Lee CS. Latest advances in hypoxia-overcoming technique of aggregation-induced emission photosensitizers for environment friendly photodynamic remedy. Adv Healthc Mater. 2021;10:2101607.
Shen L, Zhou T, Fan Y, Chang X, Wang Y, Solar J, Xing L, Jiang H. Latest progress in tumor photodynamic immunotherapy. Chin Chem Lett. 2020;31:1709–16.
Jiang N, Zhou Z, Xiong W, Chen J, Shen J, Li R, Ye R. Tumor microenvironment triggered native oxygen technology and photosensitizer launch from manganese dioxide mineralized albumin-ICG nanocomplex to amplify photodynamic immunotherapy efficacy. Chin Chem Lett. 2021;32:3948–53.
Daniell MD, Hill JS. A historical past of photodynamic remedy. Aust N Z J Surg. 1991;61:340–8.
Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic remedy. Chem Soc Rev. 2016;45:6488–519.
Lu Ok, He C, Lin W. A Chlorin-based nanoscale metallic–natural framework for photodynamic remedy of colon cancers. J Am Chem Soc. 2015;137:7600–3.
Wu L, Solar Y, Sugimoto Ok, Luo Z, Ishigaki Y, Pu Ok, Suzuki T, Chen HY, Ye D. Engineering of electrochromic supplies as activatable probes for molecular imaging and photodynamic remedy. J Am Chem Soc. 2018;140:16340–52.
Adimoolam MG, Vijayalakshmi A, Nalam MR, Sunkara MV. Chlorin e6 loaded lactoferrin nanoparticles for enhanced photodynamic remedy. J Mater Chem B. 2017;5:9189–96.
Udartseva OO, Zhidkova OV, Ezdakova MI, Ogneva IV, Andreeva ER, Buravkova LB, Gollnick SO. Low-dose photodynamic remedy promotes angiogenic potential and will increase immunogenicity of human mesenchymal stromal cells. J Photochem Photobiol B. 2019;199: 111596.
Dharmaraja AT. Function of reactive oxygen species (ROS) in therapeutics and drug resistance in most cancers and micro organism. J Med Chem. 2017;60:3221–40.
Gunduz H, Kolemen S, Akkaya EU. Singlet oxygen probes: variety in sign technology mechanisms yields a bigger coloration palette. Coord Chem Rev. 2021;429: 213641.
Sadzuka Y, Tokutomi Ok, Iwasaki F, Sugiyama I, Hirano T, Konno H, Oku N, Sonobe T. The phototoxicity of photofrin was enhanced by PEGylated liposome in vitro. Most cancers Lett. 2006;241:42–8.
Wu J, Lin Y, Li H, Jin Q, Ji J. Zwitterionic stealth peptide-capped 5-aminolevulinic acid prodrug nanoparticles for focused photodynamic remedy. J Colloid Interface Sci. 2017;485:251–9.
Li Ok, Dong W, Miao Y, Liu Q, Qiu L, Lin J. Twin-targeted 5-aminolevulinic acid derivatives with glutathione depletion perform for enhanced photodynamic remedy. J Photochem Photobiol B. 2021;215: 112107.
Haimov-Talmoud E, Harel Y, Schori H, Motiei M, Atkins A, Popovtzer R, Lellouche JP, Shefi O. Magnetic concentrating on of mTHPC to enhance the selectivity and effectivity of photodynamic remedy. ACS Appl Mater Interfaces. 2019;11:45368–80.
Pereira SP, Ayaru L, Hatfield ARW, Rogowska A, Bown S. Photodynamic remedy (PDT) of malignant biliary strictures utilizing meso-tetrahydroxyphenylchlorin (mTHPC). J Clin Oncol. 2005;23:4176–4176.
Vigneswaran Ok, Boyd NH, Oh SY, Lallani S, Boucher A, Neill SG, Olson JJ, Learn RD. YAP/TAZ transcriptional coactivators create therapeutic vulnerability to verteporfin in EGFR-mutant glioblastoma. Clin Most cancers Res. 2021;27:1553–69.
Worth G, Anastasiadou M, Sudhir S, Bouras A, Tsankova N, Hadjipanayis C. ITVT-02. Elucidating the pleiotropic results of verteporfin photodynamic remedy in preclinical glioblastoma fashions. NeuroOncology. 2021;23:vi228–vi228.
Zhao D, Tao W, Li S, Li L, Solar Y, Li G, Wang G, Wang Y, Lin B, Luo C, et al. Gentle-triggered dual-modality drug launch of self-assembled prodrug-nanoparticles for synergistic photodynamic and hypoxia-activated remedy. Nanoscale Horiz. 2020;5:886–94.
Zhang Y, Ju J, Wang D, Yuan H, Hao L, Tan Y. Aggregation-induced emission for the visualization of the construction and properties of polymers. J Mater Chem C. 2021;9:11484–96.
Wan Q, Zhang R, Zhuang Z, Li Y, Huang Y, Wang Z, Zhang W, Hou J, Tang BZ. Molecular engineering to spice up AIE-active free radical photogenerators and allow high-performance photodynamic remedy below hypoxia. Adv Funct Mater. 2020;30:2002057.
Zhao H, Xu J, Feng C, Ren J, Bao L, Zhao Y, Tao W, Zhao Y, Yang X. Tailoring aggregation extent of photosensitizers to spice up phototherapy efficiency for eliciting systemic antitumor immunity. Adv Mater. 2022;34:2106390.
Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. 2001;1740-1
Xue Ok, Dai Y, Zhao X, Zhang P, Ma F, Zhang D, Ji H, Wang X, Liang J, Qi Z. Increase extremely environment friendly singlet oxygen technology and speed up most cancers cell apoptosis for photodynamic remedy by logically designed mitochondria focused near-infrared AIEgens. Sens Actuators B. 2022;358: 131471.
Shi H, Pan X, Wang Y, Wang H, Liu W, Wang L, Chen Z. Limiting bond rotations by ring fusion: a novel molecular design technique to enhance photodynamic antibacterial efficacy of AIE photosensitizers. ACS Appl Mater Interfaces. 2022;14:17055–64.
Shi X, Sung SHP, Chau JHC, Li Y, Liu Z, Kwok RTK, Liu J, Xiao P, Zhang J, Liu B, et al. Killing G(+) or G(−) micro organism? the vital position of molecular cost in AIE-active photosensitizers. Small Strategies. 2020;4:2000046.
Zhu W, Kang M, Wu Q, Zhang Z, Wu Y, Li C, Li Ok, Wang L, Wang D, Tang BZ. Zwitterionic AIEgens: rational molecular design for NIR-II fluorescence imaging-guided synergistic phototherapy. Adv Funct Mater. 2021;31:2007026.
Gu X, Zhang X, Ma H, Jia S, Zhang P, Zhao Y, Liu Q, Wang J, Zheng X, Lam JWY, et al. Corannulene-incorporated AIE nanodots with extremely suppressed nonradiative decay for boosted most cancers phototheranostics in vivo. Adv Mater. 2018;30:1801065.
Tavakkoli Yaraki M, Wu M, Middha E, Wu W, Daqiqeh Rezaei S, Liu B, Tan YN. Gold nanostars-AIE theranostic nanodots with enhanced fluorescence and photosensitization in the direction of efficient image-guided photodynamic remedy. Nanomicro Lett. 2021;13:58.
Kang M, Kwok RTK, Wang J, Zhang H, Lam JWY, Li Y, Zhang P, Zou H, Gu X, Li F, Tang BZ. A multifunctional luminogen with aggregation-induced emission traits for selective imaging and photodynamic killing of each most cancers cells and Gram-positive micro organism. J Mater Chem B. 2018;6:3894–903.
Alam P, Leung NLC, Zhang J, Kwok RTK, Lam JWY, Tang BZ. AIE-based Iuminescence probes for metallic ion detection. Coord Chem Rev. 2021;429: 213693.
Wan H, Xu Q, Gu P, Li H, Chen D, Li N, He J, Lu J. AIE-based fluorescent sensors for low focus poisonous ion detection in water. J Hazard Mater. 2021;403: 123656.
Zhang Z, Kwok RTK, Yu Y, Tang BZ, Ng KM. Delicate and particular detection of L-lactate utilizing an AIE-active fluorophore. ACS Appl Mater Interfaces. 2017;9:38153–8.
Yan N, Hu Y, Tang BZ, Wang W-X. Actual-time 3D framework tracing of extracellular polymeric substances by an AIE-active nanoprobe. ACS Sensors. 2021;6:4206–16.
Wang Y, Zhang Y, Wang J, Liang X-J. Aggregation-induced emission (AIE) fluorophores as imaging instruments to hint the organic destiny of nano-based drug supply methods. Adv Drug Deliv Rev. 2019;143:161–76.
Jang SE, Qiu L, Cai X, Lee JWL, Zhang W, Tan E-Ok, Liu B, Zeng L. Aggregation-induced emission (AIE) nanoparticles labeled human embryonic stem cells (hESCs)-derived neurons for transplantation. Biomaterials. 2021;271: 120747.
Li WJ, Zhang YP, Wang YC, Ma Y, Wang DY, Li H, Ye XY, Yin F, Li ZG. Nucleic acids induced peptide-based AIE nanoparticles for quick cell imaging. Chin Chem Lett. 2021;32:1571–4.
Dai J, Xue H, Chen D, Lou X, Xia F, Wang S. Aggregation-induced emission luminogens for assisted most cancers surgical procedure. Coord Chem Rev. 2022;464: 214552.
Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-polymer encapsulated aggregation-induced emission nanoparticles for tumor theranostics. Adv Healthc Mater. 2021;10:2101036.
Cheng Y, Dai J, Solar C, Liu R, Zhai T, Lou X, Xia F. An intracellular H2O2-responsive AIEgen for the peroxidase-mediated selective imaging and inhibition of inflammatory cells. Angew Chem Int Ed. 2018;57:3123–7.
Li J, Meng Z, Zhuang Z, Wang B, Dai J, Feng G, Lou X, Xia F, Zhao Z, Tang BZ. Efficient remedy of drug-resistant bacterial an infection by killing planktonic micro organism and destructing biofilms with cationic photosensitizer based mostly on phosphindole oxide. Small. 2022;18:2200743.
Liu J, Liu X, Wu M, Qi G, Liu B. Engineering residing mitochondria with AIE photosensitizer for synergistic most cancers cell ablation. Nano Lett. 2020;20:7438–45.
Liu Z, Zou H, Zhao Z, Zhang P, Shan GG, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Tuning organelle specificity and photodynamic remedy effectivity by molecular perform design. ACS Nano. 2019;13:11283–93.
Shi L, Hu F, Duan Y, Wu W, Dong J, Meng X, Zhu X, Liu B. Hybrid nanospheres to beat hypoxia and intrinsic oxidative resistance for enhanced photodynamic remedy. ACS Nano. 2020;14:2183–90.
Wu W, Mao D, Xu S, Panahandeh-Fard M, Duan Y, Hu F, Kong D, Liu B. Exact molecular engineering of photosensitizers with aggregation-induced emission over 800 nm for photodynamic remedy. Adv Funct Mater. 2019;29:1901791.
Yuan Y, Feng G, Qin W, Tang BZ, Liu B. Focused and image-guided photodynamic most cancers remedy based mostly on natural nanoparticles with aggregation-induced emission traits. Chem Commun. 2014;50:8757–60.
Hu F, Huang Y, Zhang G, Zhao R, Yang H, Zhang D. Focused bioimaging and photodynamic remedy of most cancers cells with an activatable crimson fluorescent bioprobe. Anal Chem. 2014;86:7987–95.
De Las HE, Sagristá ML, Agut M, Nonell S. Photosensitive EGFR-targeted nanocarriers for mixed photodynamic and native chemotherapy. Pharmaceutics. 2022;14:405.
Yang G, Tian J, Chen C, Jiang D, Xue Y, Wang C, Gao Y, Zhang W. An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy in opposition to hypoxic tumors. Chem Sci. 2019;10:5766–72.
Wei D, Chen Y, Huang Y, Li P, Zhao Y, Zhang X, Wan J, Yin X, Liu T, Yin J, et al. NIR-light triggered dual-cascade concentrating on core-shell nanoparticles enhanced photodynamic remedy and immunotherapy. Nano As we speak. 2021;41: 101288.
Dai J, Dong X, Liu R, Chen B, Dong X, Wang Q, Hu J-J, Xia F, Lou X. A peptide-AIEgen nanocomposite mediated complete most cancers immunity cycle-cascade amplification for improved immunotherapy of tumor. Biomaterials. 2022;285: 121528.
Xu J, Zheng Q, Cheng X, Hu S, Zhang C, Zhou X, Solar P, Wang W, Su Z, Zou T, et al. Chemo-photodynamic remedy with light-triggered disassembly of theranostic nanoplatform together with checkpoint blockade for immunotherapy of hepatocellular carcinoma. J Nanobiotechnol. 2021;19:355.
Liu J, Hu F, Wu M, Tian L, Gong F, Zhong X, Chen M, Liu Z, Liu B. Bioorthogonal coordination polymer nanoparticles with aggregation-induced emission for deep tumor-penetrating radio- and radiodynamic remedy. Adv Mater. 2021;33:2007888.
Dai J, Hu J-J, Dong X, Chen B, Dong X, Liu R, Xia F, Lou X. Deep downregulation of PD-L1 by caged peptide-conjugated AIEgen/miR-140 nanoparticles for enhanced immunotherapy. Angew Chem Int Ed. 2022;61: e202117798.
Van Straten D, Mashayekhi V, De Bruijn HS, Oliveira S, Robinson DJ. Oncologic photodynamic remedy: primary rules, present scientific standing and future instructions. Cancers. 2017;9:19.
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Latest methods to develop modern photosensitizers for enhanced photodynamic remedy. Chem Rev. 2021;121:13454–619.
Xu S, Yuan Y, Cai X, Zhang CJ, Hu F, Liang J, Zhang G, Zhang D, Liu B. Tuning the singlet-triplet vitality hole: a novel strategy to environment friendly photosensitizers with aggregation-induced emission (AIE) traits. Chem Sci. 2015;6:5824–30.
Chen H, Li S, Wu M, Huang Z, Lee CS, Liu B. Membrane-anchoring photosensitizer with aggregation-induced emission traits for combating multidrug-resistant micro organism. Angew Chem Int Ed. 2020;59:632–6.
Zha M, Yang G, Li Y, Zhang C, Li B, Li Ok. Latest advances in AIEgen-based photodynamic remedy and immunotherapy. Adv Healthc Mater. 2021;10:2101066.
Tu Y, Liu J, Zhang H, Peng Q, Lam JWY, Tang BZ. Restriction of entry to the darkish state: a brand new mechanistic mannequin for heteroatom-containing AIE methods. Angew Chem Int Ed. 2019;58:14911–4.
Tu Y, Zhao Z, Lam JWY, Tang BZ. Mechanistic connotations of restriction of intramolecular motions (RIM). Natl Sci Rev. 2021;8:nwaa260.
Dai J, Wu X, Ding S, Lou X, Xia F, Wang S, Hong Y. Aggregation-induced emission photosensitizers: from molecular design to photodynamic remedy. J Med Chem. 2020;63:1996–2012.
Wu WB, Mao D, Xu SD, Kenry R, Hu F, Li XQ, Kong DL, Liu B. Polymerization-enhanced photosensitization. Chem. 2018;4:1937–51.
Chen Y, Ai W, Guo X, Li Y, Ma Y, Chen L, Zhang H, Wang T, Zhang X, Wang Z. Mitochondria-targeted polydopamine nanocomposite with AIE photosensitizer for image-guided photodynamic and photothermal tumor ablation. Small. 2019;15:1902352.
Li L, Yuan G, Qi Q, Lv C, Liang J, Li H, Cao L, Zhang X, Wang S, Cheng Y, He H. Synthesis of tetraphenylethene-based D-A conjugated molecules with near-infrared AIE options, and their software in photodynamic remedy. J Mater Chem B. 2022;10:3550–9.
Zhang F, Liu Y, Yang B, Wen G, Liu B. Close to-infrared AIEgens for lipid droplets imaging in corpus adiposum or trachea of Locusta migratoria and its software in photodynamic remedy. Sens Actuators B. 2020;322: 128589.
Yang M, Deng J, Su H, Gu S, Zhang J, Zhong A, Wu F. Small natural molecule-based nanoparticles with crimson/near-infrared aggregation-induced emission for bioimaging and PDT/PTT synergistic remedy. Mate Chem Entrance. 2021;5:406–17.
Ding GY, Tong J, Gong JY, Wang Z, Su ZM, Liu L, Han X, Wang J, Zhang L, Wang X, et al. Molecular engineering to attain AIE-active photosensitizer with NIR emission and fast ROS technology effectivity. J Mater Chem B. 2022;10:5272-8.
Wang Z, Wang C, Gan Q, Cao Y, Yuan H, Hua D. Donor–acceptor-type conjugated polymer-based multicolored drug carriers with tunable aggregation-induced emission conduct for self-illuminating most cancers remedy. ACS Appl Mater Interfaces. 2019;11:41853–61.
Gon M, Tanaka Ok, Chujo Y. A extremely environment friendly near-infrared-emissive copolymer with a N=N double-bond π-conjugated system based mostly on a fused azobenzene-boron advanced. Angew Chem Int Ed. 2018;57:6546–51.
Khan IM, Niazi S, Iqbal Khan MK, Pasha I, Mohsin A, Haider J, Iqbal MW, Rehman A, Yue L, Wang Z. Latest advances and views of aggregation-induced emission as an rising platform for detection and bioimaging. TrAC Traits Anal Chem. 2019;119: 115637.
Yang Z, Zhang Z, Solar Y, Lei Z, Wang D, Ma H, Tang BZ. Incorporating spin-orbit coupling promoted practical group into an enhanced electron D-A system: a helpful designing idea for fabricating environment friendly photosensitizer and imaging-guided photodynamic remedy. Biomaterials. 2021;275: 120934.
Li Y, Zhang R, Wan Q, Hu R, Ma Y, Wang Z, Hou J, Zhang W, Tang BZ. Malicious program-like nano-AIE aggregates based mostly on homologous concentrating on technique and their photodynamic remedy in anticancer software. Adv Sci. 2021;8:2102561.
You X, Ma H, Wang Y, Zhang G, Peng Q, Liu L, Wang S, Zhang D. Pyridinium-substituted tetraphenylethylene entailing alkyne moiety: enhancement of photosensitizing effectivity and antimicrobial exercise. Chem Asian J. 2017;12:1013–9.
Zhang L, Li Y, Che W, Zhu D, Li G, Xie Z, Tune N, Liu S, Tang BZ, Liu X, et al. AIE multinuclear Ir(III) complexes for biocompatible natural nanoparticles with extremely enhanced photodynamic efficiency. Adv Sci. 2019;6:1802050.
Cai X, Wang Ok-N, Ma W, Yang Y, Chen G, Fu H, Cui C, Yu Z, Wang X. Multifunctional AIE iridium (III) photosensitizer nanoparticles for two-photon-activated imaging and mitochondria concentrating on photodynamic remedy. J Nanobiotechnol. 2021;19:254.
Li X, Kwon N, Guo T, Liu Z, Yoon J. Progressive methods for hypoxic-tumor photodynamic remedy. Angew Chem Int Ed. 2018;57:11522–31.
Kang M, Zhang Z, Xu W, Wen H, Zhu W, Wu Q, Wu H, Gong J, Wang Z, Wang D, Tang BZ. Good metal used within the blade: well-tailored type-I photosensitizers with aggregation-induced emission traits for exact nuclear concentrating on photodynamic remedy. Adv Sci. 2021;8:2100524.
Zhuang Z, Dai J, Yu M, Li J, Shen P, Hu R, Lou X, Zhao Z, Tang BZ. Kind I photosensitizers based mostly on phosphindole oxide for photodynamic remedy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chem Sci. 2020;11:3405–17.
Guo J, Dai J, Peng X, Wang Q, Wang S, Lou X, Xia F, Zhao Z, Tang BZ. 9,10-Phenanthrenequinone: a promising kernel to develop multifunctional antitumor methods for environment friendly sort I photodynamic and photothermal synergistic remedy. ACS Nano. 2021;15:20042–55.
Liu S, Wang B, Yu Y, Liu Y, Zhuang Z, Zhao Z, Feng G, Qin A, Tang BZ. Cationization-enhanced sort I and sort II ROS technology for photodynamic remedy of drug-resistant micro organism. ACS Nano. 2022;16:9130-41.
Yang G, Ni J-S, Li Y, Zha M, Tu Y, Li Ok. Acceptor engineering for optimized ROS technology facilitates reprogramming macrophages to M1 phenotype in photodynamic immunotherapy. Angew Chem Int Ed. 2021;60:5386–93.
Zhao X, Dai Y, Ma F, Misal S, Hasrat Ok, Zhu H, Qi Z. Molecular engineering to speed up most cancers cell discrimination and enhance AIE-active sort I photosensitizer for photodynamic remedy below hypoxia. Chem Eng J. 2021;410: 128133.
Liu Z, Wang Q, Qiu W, Lyu Y, Zhu Z, Zhao X, Zhu W-H. AIE-active luminogens as extremely environment friendly free-radical ROS photogenerator for image-guided photodynamic remedy. Chem Sci. 2022;13:3599–608.
Hu R, Qin A, Tang BZ. AIE polymers: synthesis and functions. Prog Polym Sci. 2020;100: 101176.
Hu R, Leung NLC, Tang BZ. AIE macromolecules: syntheses, constructions and functionalities. Chem Soc Rev. 2014;43:4494–562.
Qin A, Lam JWY, Tang BZ. Luminogenic polymers with aggregation-induced emission traits. Prog Polym Sci. 2012;37:182–209.
Liu S, Zhang H, Li Y, Liu J, Du L, Chen M, Kwok RTK, Lam JWY, Phillips DL, Tang BZ. Methods to boost the photosensitization: polymerization and the donor–acceptor even–odd impact. Angew Chem Int Ed. 2018;57:15189–93.
Xie H, Hu W, Zhang F, Zhao C, Peng T, Zhu C, Xu J. AIE-active polyelectrolyte based mostly photosensitizers: the results of construction on antibiotic-resistant bacterial sensing and killing and pollutant decomposition. J Mater Chem B. 2021;9:5309–17.
Wang Y, Solar Y, Ran J, Yang H, Xiao S, Yang J, Yang C, Wang H, Liu Y. Utilization of nonradiative excited-state dissipation for promoted phototheranostics based mostly on an AIE-active sort I ROS generator. ACS Appl Mater Interfaces. 2022;14:225–35.
Zhou Y, Jing S, Liu S, Shen X, Cai L, Zhu C, Zhao Y, Pang M. Double-activation of mitochondrial permeability transition pore opening by way of calcium overload and reactive oxygen species for most cancers remedy. J Nanobiotechnol. 2022;20:188.
Dai J, Chen Z, Wang S, Xia F, Lou X. Erythrocyte membrane-camouflaged nanoparticles as efficient and biocompatible platform: both autologous or allogeneic erythrocyte-derived. Mater As we speak Bio. 2022;15: 100279.
Dai J, Wu M, Wang Q, Ding S, Dong X, Xue L, Zhu Q, Zhou J, Xia F, Wang S, Hong Y. Crimson blood cell membrane-camouflaged nanoparticles loaded with AIEgen and Poly(I : C) for enhanced tumoral photodynamic-immunotherapy. Natl Sci Rev. 2021;8:39.
Yang J, Dai J, Wang Q, Cheng Y, Guo J, Zhao Z, Hong Y, Lou X, Xia F. Tumor-triggered disassembly of a multiple-agent-therapy probe for environment friendly mobile internalization. Angew Chem Int Ed. 2020;59:20405–10.
Zou J, Chen S, Li Y, Zeng L, Lian G, Li J, Chen S, Huang Ok, Chen Y. Nanoparticles modified by triple single chain antibodies for MRI examination and focused remedy in pancreatic most cancers. Nanoscale. 2020;12:4473–90.
Camardo A, Carney S, Ramamurthi A. Assessing the concentrating on and destiny of cathepsin ok antibody-modified nanoparticles in a rat belly aortic aneurysm mannequin. Acta Biomater. 2020;112:225–33.
Wang L, Wang X, Yang F, Liu Y, Meng L, Pang Y, Zhang M, Chen F, Pan C, Lin S, et al. Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. Nano As we speak. 2021;40: 101280.
Takahashi M, Yoshino T, Matsunaga T. Floor modification of magnetic nanoparticles utilizing asparagines-serine polypeptide designed to regulate interactions with cell surfaces. Biomaterials. 2010;31:4952–7.
Solar C, Du Ok, Fang C, Bhattarai N, Veiseh O, Kievit F, Stephen Z, Lee D, Ellenbogen RG, Ratner B, Zhang M. PEG-mediated synthesis of extremely dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and performance in vivo. ACS Nano. 2010;4:2402–10.
Wang S, Li Ok, Chen Y, Chen H, Ma M, Feng J, Zhao Q, Shi J. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and extremely environment friendly photothermal regression of tumor. Biomaterials. 2015;39:206–17.
Mao L, Huang H, Hu D, Ma H, Tian M, Zhang X, Wei Y. A near-infrared bioprobe with aggregation-induced emission function for in vitro photodynamic remedy. Dyes Pigm. 2021;194: 109521.
Wen Q, Zhang Y, Li C, Ling S, Yang X, Chen G, Yang Y, Wang Q. NIR-II fluorescent self-assembled peptide nanochain for ultrasensitive detection of peritoneal metastasis. Angew Chem Int Ed. 2019;58:11001–6.
Tian C, Qian W, Shao X, Xie Z, Cheng X, Liu S, Cheng Q, Liu B, Wang X. Plasmonic nanoparticles with quantitatively managed bioconjugation for photoacoustic imaging of reside most cancers cells. Adv Sci. 2016;3:1600237.
Wan G, Cheng Y, Tune J, Chen Q, Chen B, Liu Y, Ji S, Chen H, Wang Y. Nucleus-targeting near-infrared nanoparticles based mostly on TAT peptide-conjugated IR780 for photo-chemotherapy of breast most cancers. Chem Eng J. 2020;380: 122458.
Li N, Solar Q, Yu Z, Gao X, Pan W, Wan X, Tang B. Nuclear-targeted photothermal remedy prevents most cancers recurrence with near-infrared triggered copper sulfide nanoparticles. ACS Nano. 2018;12:5197–206.
Lee MX, Tan DSP. Weekly versus 3-weekly paclitaxel together with carboplatin in superior ovarian most cancers: which is the optimum adjuvant chemotherapy routine? J Gynecol Oncol. 2018;29: e96.
Nimmagadda S, Penet MF. Ovarian most cancers focused theranostics. Entrance Oncol. 2020;9:1537.
Moufarrij S, Dandapani M, Arthofer E, Gomez S, Srivastava A, Lopez Acevedo M, Villagra A, Chiappinelli KB. Epigenetic remedy for ovarian most cancers: promise and progress. Clin Epigenet. 2019;11:7.
Mir Y, Elrington SA, Hasan T. A brand new nanoconstruct for epidermal development issue receptor-targeted photo-immunotherapy of ovarian most cancers. Nanomedicine. 2013;9:1114–22.
Dai J, Li Y, Lengthy Z, Jiang R, Zhuang Z, Wang Z, Zhao Z, Lou X, Xia F, Tang BZ. Environment friendly near-infrared photosensitizer with aggregation-induced emission for imaging-guided photodynamic remedy in a number of xenograft tumor fashions. ACS Nano. 2020;14:854–66.
Dai J, Cheng Y, Wu J, Wang Q, Wang W, Yang J, Zhao Z, Lou X, Xia F, Wang S, Tang BZ. Modular peptide probe for pre/intra/postoperative therapeutic to cut back recurrence in ovarian most cancers. ACS Nano. 2020;14:14698–714.
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-specific brokers for photodynamic most cancers remedy: a key determinant to spice up the efficacy. Adv Healthc Mater. 2021;10:2001240.
Deng H, Zhou Z, Yang W, Lin LS, Wang S, Niu G, Tune J, Chen X. Endoplasmic reticulum concentrating on to amplify immunogenic cell loss of life for most cancers immunotherapy. Nano Lett. 2020;20:1928–33.
Dyer O. Cervical most cancers: deaths enhance as HPV vaccine is underused, says WHO. BMJ. 2019;364: l580.
Lecavalier Barsoum M, Chaudary N, Han Ok, Koritzinsky M, Hill R, Milosevic M. Concentrating on the CXCL12/CXCR4 pathway and myeloid cells to enhance radiation remedy of regionally superior cervical most cancers. Int J Most cancers. 2018;143:1017–28.
Inada NM, Buzzá HH, Leite MF, Kurachi C, Trujillo JR, de Castro CA, Carbinatto FM, Lombardi W, Bagnato VS. Long run effectiveness of photodynamic remedy for CIN remedy. Prescribed drugs. 2019;12:107.
Hillemanns P, Petry KU, Soergel P, Collinet P, Ardaens Ok, Gallwas J, Luyten A, Dannecker C. Efficacy and security of hexaminolevulinate photodynamic remedy in sufferers with low-grade cervical intraepithelial neoplasia. Lasers Surg Med. 2014;46:456–61.
Liu X-Y, Yang JB, Wu CY, Tang Q, Lu ZL, Lin L. [12]aneN3-Conjugated AIEgens with two-photon imaging properties for synergistic gene/photodynamic remedy in vitro and in vivo. J Mater Chem B. 2022;10:945–57.
Tang F, Liu JY, Wu CY, Liang YX, Lu ZL, Ding AX, Xu MD. Two-photon near-infrared AIE luminogens as multifunctional gene carriers for most cancers theranostics. ACS Appl Mater Interfaces. 2021;13:23384–95.
Zou H, Zhang J, Wu C, He B, Hu Y, Sung HHY, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Making aggregation-induced emission luminogen extra priceless by gold: enhancing anticancer efficacy by suppressing thioredoxin reductase exercise. ACS Nano. 2021;15:9176–85.
Wen D, Zhang X, Ding L, Wen H, Liu W, Zhang C, Wang B, Li L, Diao H. Folic acid functionalized aggregation-induced emission nanoparticles for tumor cell focused imaging and photodynamic remedy. RSC Adv. 2022;12:4484–9.
Jiang M, Kwok RTK, Li X, Gui C, Lam JWY, Qu J, Tang BZ. A easy mitochondrial concentrating on AIEgen for image-guided two-photon excited photodynamic remedy. J Mater Chem B. 2018;6:2557–65.
Wang KN, Liu LY, Mao D, Hou MX, Tan CP, Mao ZW, Liu B. A nuclear-targeted AIE photosensitizer for enzyme inhibition and photosensitization in most cancers cell ablation. Angew Chem Int Ed. 2022;61: e202114600.
Zhang L, Che W, Yang Z, Liu X, Liu S, Xie Z, Zhu D, Su Z, Tang BZ, Bryce MR. Brilliant crimson aggregation-induced emission nanoparticles for multifunctional functions in most cancers remedy. Chem Sci. 2020;11:2369–74.
Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ. The regulation and performance of lactate dehydrogenase A: therapeutic potential in mind tumor. Mind Pathol. 2016;26:3–17.
Gutmann DH, Kettenmann H. Microglia/Mind macrophages as central drivers of mind tumor pathobiology. Neuron. 2019;104:442–9.
Ladomersky E, Scholtens DM, Kocherginsky M, Hibler EA, Bartom ET, Otto-Meyer S, Zhai L, Lauing KL, Choi J, Sosman JA, et al. The coincidence between growing age, immunosuppression, and the incidence of sufferers with glioblastoma. Entrance Pharmacol. 2019;10:200.
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MF-R, Ahmed H, Rahman N, Nainu F, Wahyudin E, et al. Multidrug resistance in most cancers: understanding molecular mechanisms, immunoprevention and therapeutic approaches. Entrance Oncol. 2022;12:891652.
Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms related to altered intracellular distribution of anticancer brokers. Pharmacol Ther. 2000;85:217–29.
Wu Q, Yang Z, Nie Y, Shi Y, Fan D. Multi-drug resistance in most cancers chemotherapeutics: mechanisms and lab approaches. Most cancers Lett. 2014;347:159–66.
Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for most cancers remedy based mostly on chemotherapy. Molecules. 2018;23:826.
Lee YT, Tan YJ, Oon CE. Molecular focused remedy: treating most cancers with specificity. Eur J Pharmacol. 2018;834:188–96.
Wilkes GM. Focused remedy: attacking most cancers with molecular and immunological focused brokers. Asia Pac J Clin Onco. 2018;5:137–55.
Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for most cancers remedy: present progress and views. J Hematol Oncol. 2021;14:85.
Sheng Z, Guo B, Hu D, Xu S, Wu W, Liew WH, Yao Ok, Jiang J, Liu C, Zheng H, Liu B. Brilliant aggregation-induced-emission dots for focused synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic mind tumors. Adv Mater. 2018;30:1800766.
Gao D, Li Y, Wu Y, Liu Y, Hu D, Liang S, Liao J, Pan M, Zhang P, Li Ok, et al. Albumin-consolidated AIEgens for reinforcing glioma and cerebrovascular NIR-II fluorescence imaging. ACS Appl Mater Interfaces. 2022. https://doi.org/10.1021/acsami.1c22700.
Luo D, Carter KA, Miranda D, Lovell JF. Chemophototherapy: an rising remedy possibility for stable tumors. Adv Sci. 2017;4:1600106.
Lim C, Moon J, Sim T, Received WR, Lee ES, Youn YS, Oh KT. A nano-complex system to beat antagonistic photo-chemo mixture most cancers remedy. J Management Launch. 2019;295:164–73.
Li Y, Deng Y, Tian X, Ke H, Guo M, Zhu A, Yang T, Guo Z, Ge Z, Yang X, Chen H. Multipronged design of light-triggered nanoparticles to beat cisplatin resistance for environment friendly ablation of resistant tumor. ACS Nano. 2015;9:9626–37.
Guo B, Wu M, Shi Q, Dai T, Xu S, Jiang J, Liu B. All-in-one molecular aggregation-induced emission theranostics: fluorescence picture guided and mitochondria focused chemo- and photodynamic most cancers cell ablation. Chem Mater. 2020;32:4681–91.
Fortin D. The blood-brain barrier: its affect within the remedy of mind tumors metastases. Curr Most cancers Drug Targets. 2012;12:247–59.
Tang J, Wang Q, Yu Q, Qiu Y, Mei L, Wan D, Wang X, Li M, He Q. A stabilized retro-inverso peptide ligand of transferrin receptor for enhanced liposome-based hepatocellular carcinoma-targeted drug supply. Acta Biomater. 2019;83:379–89.
Kuang Y, An S, Guo Y, Huang S, Shao Ok, Liu Y, Li J, Ma H, Jiang C. T7 peptide-functionalized nanoparticles using RNA interference for glioma twin concentrating on. Int J Pharm. 2013;454:11–20.
Hu Ok, Zhou D, Rao L, Wang P, Xiang C, Chen F. A multifunctional AIE nanoprobe as a drug supply bioimaging and most cancers remedy system. Entrance Bioeng Biotechnol. 2021;9:766470.
Jiang Y, Zhang J, Meng F, Zhong Z. Apolipoprotein E peptide-directed chimeric polymersomes mediate an ultrahigh-efficiency focused protein remedy for glioblastoma. ACS Nano. 2018;12:11070–9.
Wang J, Liu Y, Morsch M, Lu Y, Shangguan P, Han L, Wang Z, Chen X, Tune C, Liu S, et al. Mind-targeted aggregation-induced-emission nanoparticles with near-infrared imaging at 1550 nm boosts orthotopic glioblastoma theranostics. Adv Mater. 2022;34:2106082.
Deng G, Peng X, Solar Z, Zheng W, Yu J, Du L, Chen H, Gong P, Zhang P, Cai L, Tang BZ. Pure-killer-cell-inspired nanorobots with aggregation-induced emission traits for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano. 2020;14:11452–62.
Whiteman DC, Inexperienced AC, Olsen CM. The rising burden of invasive melanoma: projections of incidence charges and numbers of latest circumstances in six inclined populations by means of 2031. J Make investments Dermatol. 2016;136:1161–71.
de Vries E, Willem CJ. Cutaneous malignant melanoma in Europe. Eur J Most cancers. 2004;40:2355–66.
Blume-Peytavi U. ninth pores and skin academy symposium: constructing bridges in dermatology chair’s introduction. Dermatol Ther. 2017;7:1–3.
Juszczak AM, Wöelfle U, Končić MZ, Tomczyk M. Pores and skin most cancers, together with associated pathways and remedy and the position of luteolin derivatives as potential therapeutics. Med Res Rev. 2022;42:1423-62.
Su MY, Fisher DE. Immunotherapy within the precision drugs period: melanoma and past. PLoS Med. 2016;13: e1002196.
Guadagnolo BA, Zagars GK. Adjuvant radiation remedy for high-risk nodal metastases from cutaneous melanoma. Lancet Oncol. 2009;10:409–16.
Zheng Z, Liu H, Zhai S, Zhang H, Shan G, Kwok RTK, Ma C, Sung HHY, Williams ID, Lam JWY, et al. Extremely environment friendly singlet oxygen technology, two-photon photodynamic remedy and melanoma ablation by rationally designed mitochondria-specific near-infrared AIEgens. Chem Sci. 2020;11:2494–503.
Li Y, Tang R, Liu X, Gong J, Zhao Z, Sheng Z, Zhang J, Li X, Niu G, Kwok RTK, et al. Brilliant aggregation-induced emission nanoparticles for two-photon imaging and localized compound remedy of cancers. ACS Nano. 2020;14:16840–53.
Kashyap MP, Sinha R, Mukhtar MS, Athar M. Epigenetic regulation within the pathogenesis of non-melanoma pores and skin most cancers. Semin Most cancers Biol. 2020;83:36-56.
Wan J, Dai H, Zhang X, Liu S, Lin Y, Somani AK, Xie J, Han J. Distinct transcriptomic landscapes of cutaneous basal cell carcinomas and squamous cell carcinomas. Genes Dis. 2021;8:181–92.
Wang J, Zhu X, Zhang J, Wang H, Liu G, Bu Y, Yu J, Tian Y, Zhou H. AIE-based theranostic agent: in situ monitoring mitophagy previous to late apoptosis to information the photodynamic remedy. ACS Appl Mater Interfaces. 2020;12:1988–96.
Mederos N, Friedlaender A, Peters S, Addeo A. Gender-specific points of epidemiology, molecular genetics and consequence: lung most cancers. ESMO Open. 2020;5: e000796.
Maconachie R, Mercer T, Navani N, McVeigh G. Lung most cancers: analysis and administration: abstract of up to date NICE steering. BMJ. 2019;364: l1049.
Hurmuz P, Cengiz M, Ozyigit G, Akkas EA, Yuce D, Yilmaz MT, Yildiz D, Zorlu F, Akyol F. Stereotactic physique radiotherapy in sufferers with early-stage non-small cell lung most cancers: does beam-on time matter? Japanese J Clin Oncol. 2020;50:1182–7.
Faehling M, Witte H, Sebastian M, Ulmer M, Sätzler R, Steinestel Ok, Brückl WM, Evers G, Büschenfelde CM, Bleckmann A. Actual-world multicentre evaluation of neoadjuvant immunotherapy and chemotherapy in localized or oligometastatic non-small cell lung most cancers (KOMPASSneoOP). Ther Adv Med Oncol. 2022;14:17588359221085332.
Lu X, Liu S, Han M, Yang X, Solar Ok, Wang H, Mu H, Du Y, Wang A, Ni L, Zhang C. Afatinib-loaded immunoliposomes functionalized with cetuximab: A novel technique concentrating on the epidermal development issue receptor for remedy of non-small-cell lung most cancers. Int J Pharm. 2019;560:126–35.
Gao M, Su H, Lin G, Li S, Yu X, Qin A, Zhao Z, Zhang Z, Tang BZ. Focused imaging of EGFR overexpressed most cancers cells by brightly fluorescent nanoparticles conjugated with cetuximab. Nanoscale. 2016;8:15027–32.
Su H, Deng Z, Liu Y, Zhao Y, Liu H, Zhao Z, Tang BZ. A brightly crimson emissive AIEgen and its antibody conjugated nanoparticles for most cancers cell concentrating on imaging. Mater Chem Entrance. 2022;6:1317–23.
Wang C, Zhao X, Jiang H, Wang J, Zhong W, Xue Ok, Zhu C. Transporting mitochondrion-targeting photosensitizers into most cancers cells by low-density lipoproteins for fluorescence-feedback photodynamic remedy. Nanoscale. 2021;13:1195–205.
Arnesano F, Nardella MI, Natile G. Platinum medicine, copper transporters and copper chelators. Coord Chem Rev. 2018;374:254–60.
Shim MK, Moon Y, Yang S, Kim J, Cho H, Lim S, Yoon HY, Seong JK, Kim Ok. Most cancers-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant most cancers remedy. Biomaterials. 2020;261: 120347.
Su Y, Lin H, Tu Y, Wang MM, Zhang GD, Yang J, Liu HK, Su Z. Combating metallodrug resistance by means of alteration of drug metabolism and blockage of autophagic flux by mitochondria-targeting AIEgens. Chem Sci. 2022;13:1428–39.
Deng J, Yang M, Li C, Liu G, Solar Q, Luo X, Wu F. Single molecular-based nanoparticles with aggregation-induced emission traits for fluorescence imaging and environment friendly most cancers phototherapy. Dyes Pigm. 2021;187: 109130.
Zheng Y, Lu H, Jiang Z, Guan Y, Zou J, Wang X, Cheng R, Gao H. Low-power white gentle triggered AIE polymer nanoparticles with excessive ROS quantum yield for mitochondria-targeted and image-guided photodynamic remedy. J Mater Chem B. 2017;5:6277–81.
Xiao YF, Chen WC, Chen JX, Lu G, Tian S, Cui X, Zhang Z, Chen H, Wan Y, Li S, Lee CS. Amplifying free radical technology of AIE photosensitizer with small singlet–triplet splitting for hypoxia-overcoming photodynamic remedy. ACS Appl Mater Interfaces. 2022;14:5112–21.
Cao S, Xia Y, Shao J, Guo B, Dong Y, Pijpers IAB, Zhong Z, Meng F, Abdelmohsen LKEA, Williams DS, van Hest JCM. Biodegradable polymersomes with construction inherent fluorescence and concentrating on capability for enhanced photo-dynamic remedy. Angew Chem Int Ed. 2021;60:17629–37.
Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2022. Ca-Most cancers J Clins. 2022;72:7–33.
Yu J, Mu Q, Fung M, Xu X, Zhu L, Ho RJY. Challenges and alternatives in metastatic breast most cancers remedies: Nano-drug combos delivered preferentially to metastatic cells could improve therapeutic response. Pharmacol Ther. 2022;236: 108108.
Wang Y, Yu Y, Chen Ok, Fu T, Yao H. Locoregional surgical procedure of the first tumor in stage IV breast most cancers sufferers. J Clin Oncol. 2017;35:566–566.
Poleszczuk J, Luddy Ok, Chen L, Lee JK, Harrison LB, Czerniecki BJ, Soliman H, Enderling H. Neoadjuvant radiotherapy of early-stage breast most cancers and long-term disease-free survival. Breast Most cancers Res. 2017;19:75.
Barinoff J, Schmidt M, Schneeweiss A, Schoenegg W, Thill M, Keitel S, Lattrich CR, Hinke A, Kutscheidt A, Jackisch C. Main metastatic breast most cancers within the period of focused remedy—prognostic influence and the position of breast tumour surgical procedure. Eur J Most cancers. 2017;83:116–24.
Jyotsana N, Zhang Z, Himmel Lauren E, Yu F, King Michael R. Minimal dosing of leukocyte concentrating on TRAIL decreases triple-negative breast most cancers metastasis following tumor resection. Sci Adv. 2019;5:4197.
Rios Garcia M, Steinbauer B, Srivastava Ok, Singhal M, Mattijssen F, Maida A, Christian S, Hess Stumpp H, Augustin HG, Müller Decker Ok, et al. Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast most cancers metastasis and recurrence. Cell Metab. 2017;26:842-855.e845.
Jiang R, Dai J, Dong X, Wang Q, Meng Z, Guo J, Yu Y, Wang S, Xia F, Zhao Z, et al. Bettering image-guided surgical and immunological tumor remedy efficacy by photothermal and photodynamic therapies based mostly on a multifunctional NIR AIEgen. Adv Mater. 2021;33:2101158.
Su Y, Tu Y, Lin H, Wang MM, Zhang GD, Yang J, Liu HK, Su Z. Mitochondria-targeted Pt(IV) prodrugs conjugated with an aggregation-induced emission luminogen in opposition to breast most cancers cells by twin modulation of apoptosis and autophagy inhibition. J Inorg Biochem. 2022;226: 111653.
Liu L, Wang X, Wang LJ, Guo L, Li Y, Bai B, Fu F, Lu H, Zhao X. One-for-all phototheranostic agent based mostly on aggregation-induced emission traits for multimodal imaging-guided synergistic photodynamic/photothermal most cancers remedy. ACS Appl Mater Interfaces. 2021;13:19668–78.
Wang Y, Gong N, Li Y, Lu Q, Wang X, Li J. Atomic-level nanorings (A-NRs) therapeutic agent for photoacoustic imaging and photothermal/photodynamic remedy of most cancers. J Am Chem Soc. 2020;142:1735–9.
Zhao X, Lengthy S, Li M, Cao J, Li Y, Guo L, Solar W, Du J, Fan J, Peng X. Oxygen-dependent regulation of excited-state deactivation strategy of rational photosensitizer for sensible phototherapy. J Am Chem Soc. 2020;142:1510–7.
Shao W, Yang C, Li F, Wu J, Wang N, Ding Q, Gao J, Ling D. Molecular design of conjugated small molecule nanoparticles for synergistically enhanced PTT/PDT. Nanomicro Lett. 2020;12:147.
Zhang Z, Xu W, Kang M, Wen H, Guo H, Zhang P, Xi L, Li Ok, Wang L, Wang D, Tang BZ. An all-round athlete on the observe of phototheranostics: subtly regulating the steadiness between radiative and nonradiative decays for multimodal imaging-guided synergistic remedy. Adv Mater. 2020;32:2003210.
Zhang L, Jing D, Jiang N, Rojalin T, Baehr CM, Zhang D, Xiao W, Wu Y, Cong Z, Li JJ, et al. Transformable peptide nanoparticles arrest HER2 signalling and trigger most cancers cell loss of life in vivo. Nat Nanotechnol. 2020;15:145–53.
Liao Y, Wang R, Wang S, Xie Y, Chen H, Huang R, Shao L, Zhu Q, Liu Y. Extremely environment friendly multifunctional natural photosensitizer with aggregation-induced emission for in vivo bioimaging and photodynamic remedy. ACS Appl Mater Interfaces. 2021;13:54783–93.
Huang L, Qing D, Zhao S, Wu X, Yang Ok, Ren X, Zheng X, Lan M, Ye J, Zeng L, Niu G. Acceptor-donor-acceptor structured deep-red AIE photosensitizer: lysosome-specific concentrating on, in vivo long-term imaging, and efficient photodynamic remedy. Chem Eng J. 2022;430: 132638.
Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2021. CA Most cancers J Clins. 2021;71:7–33.
Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, Jemal A. Colorectal most cancers statistics, 2017. CA Most cancers J Clins. 2017;67:177–93.
Montminy EM, Zhou M, Maniscalco L, Abualkhair W, Kim MK, Siegel RL, Wu XC, Itzkowitz SH, Karlitz JJ. Contributions of adenocarcinoma and carcinoid tumors to early-onset colorectal most cancers incidence charges in the us. Ann Intern Med. 2020;174:157–66.
Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JJY, Younger GP, Kuipers EJ. Colorectal most cancers screening: a world overview of present programmes. Intestine. 2015;64:1637.
Nelson H, Petrelli N, Carlin A, Couture J, Fleshman J, Guillem J, Miedema B, Ota D, Sargent D. Tips 2000 for colon and rectal most cancers surgical procedure. JNCI J Natl Most cancers Inst. 2001;93:583–96.
Charlton ME, Jiang D, Lin C, Stitzenberg KB, Pendergast JF, Chrischilles EA, Wallace RB. Components related to use of preoperative chemoradiotherapy for rectal most cancers. J Clin Oncol. 2011;29:e14079–e14079.
Shen J, Tao Ok, Gu P, Gui C, Wang D, Tan Z, Wang L, Wang Z, Qin A, Tang BZ, Bao S. Aggregation-induced emission luminogen for particular identification of malignant tumour in vivo. Sci China Chem. 2020;63:393–7.
He H, Liu L, Liang R, Zhou H, Pan H, Zhang S, Cai L. Tumor-targeted nanoplatform for in situ oxygenation-boosted immunogenic phototherapy of colorectal most cancers. Acta Biomater. 2020;104:188–97.
Yang H, Zhuang J, Li N, Li Y, Zhu S, Hao J, Xin J, Zhao N. Environment friendly near-infrared photosensitizer with aggregation-induced emission traits for mitochondria-targeted and image-guided photodynamic most cancers remedy. Mater Chem Entrance. 2020;4:2064–71.
Gao S, Yu S, Zhang Y, Wu A, Zhang S, Wei G, Wang H, Xiao Z, Lu W. Molecular engineering of near-Infrared-II photosensitizers with steric-hindrance impact for image-guided most cancers photodynamic remedy. Adv Funct Mater. 2021;31:2008356.
Min X, Yi F, Han XL, Li M, Gao Q, Liang X, Chen Z, Solar Y, Liu Y. Focused photodynamic remedy utilizing a water-soluble aggregation-induced emission photosensitizer activated by an acidic tumor microenvironment. Chem Eng J. 2022;432: 134327.
Zhang YH, Li X, Huang L, Kim HS, An J, Lan M, Cao QY, Kim JS. AIE based mostly GSH activatable photosensitizer for imaging-guided photodynamic remedy. Chem Commun. 2020;56:10317–20.
Swami U, McFarland TR, Nussenzveig R, Agarwal N. Superior prostate most cancers: remedy advances and future instructions. Traits Most cancers. 2020;6:702–15.
Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2021. CA Most cancers J Clins. 2021;71:359–359.
Huang J, Lin B, Li B. Anti-androgen receptor therapies in prostate most cancers: a quick replace and perspective. Entrance Oncol. 2022;12:865350.
Kretschmer A, Tilki D. Biomarkers in prostate cancer-current scientific utility and future views. Crit Rev Oncol Hematol. 2017;120:180–93.
Wang X, Ramamurthy G, Shirke AA, Walker E, Mangadlao J, Wang Z, Wang Y, Shan L, Schluchter MD, Dong Z, et al. Photodynamic remedy is an efficient adjuvant remedy for image-guided surgical procedure in prostate most cancers. Most cancers Res. 2020;80:156–62.
Jayaram DT, Ramos Romero S, Shankar BH, Garrido C, Rubio N, Sanchez-Cid L, Gómez SB, Blanco J, Ramaiah D. In vitro and in vivo demonstration of photodynamic exercise and cytoplasm imaging by means of TPE nanoparticles. ACS Chem Biol. 2016;11:104–12.
Ghosh S, Gul AR, Xu P, Lee SY, Rafique R, Kim YH, Park TJ. Goal supply of photo-triggered nanocarrier for externally activated chemo-photodynamic remedy of prostate most cancers. Mater As we speak Chem. 2022;23: 100688.
Tan H, Hou N, Liu Y, Liu B, Cao W, Zheng D, Li W, Liu Y, Xu B, Wang Z, Cui D. CD133 antibody focused supply of gold nanostars loading IR820 and docetaxel for multimodal imaging and near-infrared photodynamic/photothermal/chemotherapy in opposition to castration resistant prostate most cancers. Nanomedicine. 2020;27: 102192.
Bouffard E, Mauriello Jimenez C, El Cheikh Ok, Maynadier M, Basile I, Raehm L, Nguyen C, Gary Bobo M, Garcia M, Durand JO, Morère A. Environment friendly photodynamic remedy of prostate most cancers cells by means of an improved concentrating on of the cation-independent mannose 6-phosphate receptor. Int J Mol Sci. 2019;20:2809.
Overchuk M, Damen MPF, Harmatys KM, Pomper MG, Chen J, Zheng G. Lengthy-circulating prostate-specific membrane antigen-targeted NIR phototheranostic agent. Photochem Photobiol. 2020;96:718–24.
Liu Q, Huang J, He L, Yang X, Yuan L, Cheng D. Molecular fluorescent probes for liver tumor imaging. Chem Asian J. 2022;17: e202200091.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. World most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clins. 2018;68:394–424.
EASL scientific follow pointers. administration of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.
Patel Ok, Lamm R, Altshuler P, Dang H, Shah AP. Hepatocellular carcinoma-the affect of immunoanatomy and the position of immunotherapy. Int J Mol Sci. 2020;21:6757.
Tsilimigras DI, Bagante F, Sahara Ok, Moris D, Hyer JM, Wu L, Ratti F, Marques HP, Soubrane O, Paredes AZ, et al. Prognosis after resection of barcelona clinic liver most cancers (BCLC) stage 0, A, and B hepatocellular carcinoma: a complete evaluation of the present BCLC classification. Ann Surg Oncol. 2019;26:3693–700.
Verslype C, Rosmorduc O, Rougier P. Hepatocellular carcinoma: ESMO–ESDO scientific follow pointers for analysis, remedy and follow-up. Ann Oncol. 2012;23:vii41–8.
Bruix J, Sherman M. Administration of hepatocellular carcinoma: an replace. Hepatology. 2011;53:1020–2.
Bruix J, Reig M, Sherman M. Proof-based analysis, staging, and remedy of sufferers with hepatocellular carcinoma. Gastroenterology. 2016;150:835–53.
Koda M, Murawaki Y, Hirooka Y, Kitamoto M, Ono M, Sakaeda H, Joko Ok, Sato S, Tamaki Ok, Yamasaki T, et al. Issues of radiofrequency ablation for hepatocellular carcinoma in a multicenter research: an evaluation of 16 346 handled nodules in 13 283 sufferers. Hepatol Res. 2012;42:1058–64.
Teng M, Chen Y, Xie Y, Li Z, Wan Q, Wang Z, Yang J. Brilliant near-infrared aggregation-induced emission dots for long-term bioimaging in vitro/vivo. Dyes Pigm. 2021;195: 109679.
Xia Q, Chen Z, Zhou Y, Liu R. Close to-infrared natural fluorescent nanoparticles for long-term monitoring and photodynamic remedy of most cancers. J Nanotheranostics. 2019;3:156–65.
Dineshkumar S, Raj A, Srivastava A, Mukherjee S, Pasha SS, Kachwal V, Fageria L, Chowdhury R, Laskar IR. Facile incorporation of “aggregation-induced emission”-active conjugated polymer into mesoporous silica hole nanospheres: synthesis, characterization, photophysical research, and software in bioimaging. ACS Appl Mater Inter. 2019;11:31270–82.
Gao Y, Zheng QC, Xu S, Yuan Y, Cheng X, Jiang S, Kenry YuQ, Tune Z, Liu B, Li M. Theranostic nanodots with aggregation-induced emission attribute for focused and image-guided photodynamic remedy of hepatocellular carcinoma. Theranostics. 2019;9:1264–79.
Zhao D, Han HH, Zhu L, Xu FZ, Ma XY, Li J, James TD, Zang Y, He XP, Wang C. Lengthy-wavelength AIE-based fluorescent probes for mitochondria-targeted imaging and photodynamic remedy of hepatoma cells. ACS Appl Bio Mater. 2021;4:7016–24.
Ding Ok, Wang L, Zhu J, He D, Huang Y, Zhang W, Wang Z, Qin A, Hou J, Tang BZ. Picture-enhanced chemotherapy efficiency in bladder most cancers remedy by way of albumin coated AIE aggregates. ACS Nano. 2022;16:7535–46.
Duo Y, Zhu D, Solar X, Suo M, Zheng Z, Jiang W, Tang BZ. Affected person-derived microvesicles/AIE luminogen hybrid system for customized sonodynamic most cancers remedy in patient-derived xenograft fashions. Biomaterials. 2021;272: 120755.
Solar X, Zebibula A, Dong X, Li G, Zhang G, Zhang D, Qian J, He S. Focused and imaging-guided in vivo photodynamic remedy for tumors utilizing dual-function, aggregation-induced emission nanoparticles. Nano Res. 2018;11:2756–70.
Solar X, Zebibula A, Dong X, Zhang G, Zhang D, Qian J, He S. Aggregation-induced emission nanoparticles encapsulated with PEGylated nano graphene oxide and their functions in two-photon fluorescence bioimaging and photodynamic remedy in vitro and in vivo. ACS Appl Mater Interfaces. 2018;10:25037–46.
Hao J, Yin H, Lu W, Zhuang J, Chen M, Gao J, Zhu G, Cao W, Kan Y, Lu Y, Guo H. Modulating endogenous oxygen consumption enhanced AIEgens-mediated photodynamic remedy in opposition to superior bladder tumor. Half Half Syst Charact. 2021;38:2100048.
Lauterio A, De Carlis R, Centonze L, Buscemi V, Incarbone N, Vella I, De Carlis L. Present surgical administration of peri-hilar and intra-hepatic cholangiocarcinoma. Cancers. 2021;13:3657.
Pear S, Bachini M, Gardett I, Lindsey S, Delcorso Ellmann T, Abdel WR. Boundaries for scientific trial enrollment in cholangiocarcinoma sufferers. J Clin Oncol. 2022;40:407–407.
Li H, Chen L, Zhu GY, Yao X, Dong R, Guo J-H. Interventional remedy for cholangiocarcinoma. Entrance Oncol. 2021;11:671327.
Bai M, Fu W, Su G, Cao J, Gao L, Huang C, Ma H, Zhang J, Yue P, Bai B, et al. The position of extracellular vesicles in cholangiocarcinoma. Most cancers Cell Int. 2020;20:435.
Samatiwat P, Prawan A, Senggunprai L, Kukongviriyapan V. Repression of Nrf2 enhances antitumor impact of 5-fluorouracil and gemcitabine on cholangiocarcinoma cells. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:601–12.
Rahnemai Azar AA, Weisbrod AB, Dillhoff M, Schmidt C, Pawlik TM. Intrahepatic cholangiocarcinoma: present administration and rising therapies. Skilled Rev Gastroenterol Hepatol. 2017;11:439–49.
Massironi S, Pilla L, Elvevi A, Longarini R, Rossi RE, Bidoli P, Invernizzi P. New and rising systemic therapeutic choices for superior cholangiocarcinoma. Cells. 2020;9:688.
Rumalla A, Baron TH, Wang KK, Gores GJ, Stadheim LM, de Groen PC. Endoscopic software of photodynamic remedy for cholangiocarcinoma. Gastrointest Endosc. 2001;53:500–4.
Kumta NA, DeRoche Ok, Kahaleh M. Temoporfin photodynamic remedy in superior hilar ductal carcinoma: a promising endoscopic modality. Hepatology. 2015;62:1342–3.
Kahaleh M. Photodynamic remedy in cholangiocarcinoma. J Natl Compr Canc Netw. 2012;10:S44–7.
Lamarca A, Edeline J, McNamara MG, Hubner RA, Nagino M, Bridgewater J, Primrose J, Valle JW. Present requirements and future views in adjuvant remedy for biliary tract cancers. Most cancers Deal with Rev. 2020;84: 101936.
Li M, Gao Y, Yuan Y, Wu Y, Tune Z, Tang BZ, Liu B, Zheng QC. One-step formulation of focused aggregation-induced emission dots for image-guided photodynamic remedy of cholangiocarcinoma. ACS Nano. 2017;11:3922–32.
Zhou T, Zhu J, Shang D, Chai C, Li Y, Solar H, Li Y, Gao M, Li M. Mitochondria-anchoring and AIE-active photosensitizer for self-monitored cholangiocarcinoma remedy. Mater Chem Entrance. 2020;4:3201–8.